The human platelet membrane glycoprotein IIb/IIIa complex: a multi functional adhesion receptor. 1992

P Perutelli, and P G Mori
Laboratorio di Ematologia, Istituto G. Gaslini, Genova, Italy.

The glycoprotein GPIIb/IIIa complex is a major constituent of the platelet membrane; it plays an important role in platelet adhesion and aggregation. The complex is a member of the integrin superfamily. Integrins are related membrane receptors which mediate the adhesive interactions of a variety of cells; they specifically recognize the arginine-glycine-aspartic acid (RGD) sequence present in several adhesive proteins. The GPIIb/IIIa complex of activated platelets can bind fibrinogen, von Willebrand factor, fibronectin, vitronectin and thrombospondin. Platelets are activated by a variety of signals including extracellular matrix molecules and soluble factors; upon platelet activation the complex undergoes a conformational change, thus permitting the macromolecular ligands access to their binding sites. In turn, fibrinogen binding results in a receptor modification and neoantigens exposure; such events may participate in signal transduction. The adhesive proteins compete reciprocally for binding to GPIIb/IIIa, and the complex binds to different domains of them, thus creating multiple interactions with the ligands.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010973 Platelet Adhesiveness The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces. Adhesiveness, Platelet,Adhesivenesses, Platelet,Platelet Adhesivenesses
D010980 Platelet Membrane Glycoproteins Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors. PM-GP,Platelet Glycoprotein,Platelet Membrane Glycoprotein,PM-GPs,Platelet Glycoproteins,Glycoprotein, Platelet,Glycoprotein, Platelet Membrane,Glycoproteins, Platelet,Glycoproteins, Platelet Membrane,Membrane Glycoprotein, Platelet,Membrane Glycoproteins, Platelet,PM GP
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D014841 von Willebrand Factor A high-molecular-weight plasma protein, produced by endothelial cells and megakaryocytes, that is part of the factor VIII/von Willebrand factor complex. The von Willebrand factor has receptors for collagen, platelets, and ristocetin activity as well as the immunologically distinct antigenic determinants. It functions in adhesion of platelets to collagen and hemostatic plug formation. The prolonged bleeding time in VON WILLEBRAND DISEASES is due to the deficiency of this factor. Factor VIII-Related Antigen,Factor VIIIR-Ag,Factor VIIIR-RCo,Plasma Factor VIII Complex,Ristocetin Cofactor,Ristocetin-Willebrand Factor,von Willebrand Protein,Factor VIII Related Antigen,Factor VIIIR Ag,Factor VIIIR RCo,Ristocetin Willebrand Factor

Related Publications

P Perutelli, and P G Mori
January 1987, Nouvelle revue francaise d'hematologie,
P Perutelli, and P G Mori
April 1988, Blood,
P Perutelli, and P G Mori
August 1988, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
P Perutelli, and P G Mori
May 1987, Blood,
P Perutelli, and P G Mori
September 1985, The Journal of biological chemistry,
P Perutelli, and P G Mori
November 1985, Analytical biochemistry,
P Perutelli, and P G Mori
March 2000, Expert opinion on pharmacotherapy,
P Perutelli, and P G Mori
April 1988, Thrombosis and haemostasis,
Copied contents to your clipboard!