Cortical connections of subdivisions of inferior temporal cortex in squirrel monkeys. 1992

R E Weller, and G E Steele
Department of Psychology, University of Alabama, Birmingham 35294.

Patterns of cortical connections and architectonics were used to determine subdivisions of inferior temporal (IT) cortex of squirrel monkeys. Single or multiple injections of the tracers wheat germ agglutinin-horseradish peroxidase, Fast Blue, Diamidino Yellow, Fluoro-Gold, and 3H-amino acids were placed into IT cortex. Most injections were placed in caudal IT cortex in the region previously shown to receive input from the caudal subdivision of the Dorsolateral Area, DLC; additional injections were placed in more rostral IT cortex. The results indicate the presence of two major regions: a caudal region, ITC, and a rostral region, ITR. An intermediate region of cortex along the ITC-ITR border that displays some connections of ITC and some connections of ITR may be another area. ITC contains a more myelinated dorsal area, ITCd, and a larger ventral area, ITCv. Both ITCd and ITCv receive a major projection from DLC; additional input from DLR, MT, and VII; and send strong projections to ITR, the lateral bank of the superior temporal sulcus, and dorsolateral prefrontal cortex. Only ITCd has strong connections with DLR and cortex in the depths of the superior temporal sulcus, and only ITCv has connections with lateral orbital cortex. The overall pattern of connections between ITC and DLC suggests that ITC has a crude topographic organization, with dorsal cortex representing the lower field and ventral cortex representing the upper field. ITR differs from ITC by receiving little if any input from DLC; projecting to inferior temporal polar cortex, the rostral Sylvian fissure, and medial orbital cortex; and having a less distinct layer IV. Comparison of subdivisions of inferior temporal cortex defined in the present study in squirrel monkeys and those reported in other primates suggests that ITC of squirrel monkeys may correspond to area TEO of macaque monkeys.

UI MeSH Term Description Entries
D007267 Injections Introduction of substances into the body using a needle and syringe. Injectables,Injectable,Injection
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012453 Saimiri A genus of the family CEBIDAE consisting of four species: S. boliviensis, S. orstedii (red-backed squirrel monkey), S. sciureus (common squirrel monkey), and S. ustus. They inhabit tropical rain forests in Central and South America. S. sciureus is used extensively in research studies. Monkey, Squirrel,Squirrel Monkey,Monkeys, Squirrel,Saimirus,Squirrel Monkeys
D013702 Temporal Lobe Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE. Anterior Temporal Lobe,Brodmann Area 20,Brodmann Area 21,Brodmann Area 22,Brodmann Area 37,Brodmann Area 38,Brodmann Area 52,Brodmann's Area 20,Brodmann's Area 21,Brodmann's Area 22,Brodmann's Area 37,Brodmann's Area 38,Brodmann's Area 52,Inferior Temporal Gyrus,Middle Temporal Gyrus,Parainsular Area,Fusiform Gyrus,Gyrus Fusiformis,Gyrus Temporalis Superior,Inferior Horn of Lateral Ventricle,Inferior Horn of the Lateral Ventricle,Lateral Occipito-Temporal Gyrus,Lateral Occipitotemporal Gyrus,Occipitotemporal Gyrus,Planum Polare,Superior Temporal Gyrus,Temporal Cortex,Temporal Gyrus,Temporal Horn,Temporal Horn of the Lateral Ventricle,Temporal Operculum,Temporal Region,Temporal Sulcus,Anterior Temporal Lobes,Area 20, Brodmann,Area 20, Brodmann's,Area 21, Brodmann,Area 21, Brodmann's,Area 22, Brodmann,Area 22, Brodmann's,Area 37, Brodmann,Area 37, Brodmann's,Area 38, Brodmann,Area 38, Brodmann's,Area 52, Brodmann,Area 52, Brodmann's,Area, Parainsular,Areas, Parainsular,Brodmanns Area 20,Brodmanns Area 21,Brodmanns Area 22,Brodmanns Area 37,Brodmanns Area 38,Brodmanns Area 52,Cortex, Temporal,Gyrus, Fusiform,Gyrus, Inferior Temporal,Gyrus, Lateral Occipito-Temporal,Gyrus, Lateral Occipitotemporal,Gyrus, Middle Temporal,Gyrus, Occipitotemporal,Gyrus, Superior Temporal,Gyrus, Temporal,Horn, Temporal,Lateral Occipito Temporal Gyrus,Lobe, Anterior Temporal,Lobe, Temporal,Occipito-Temporal Gyrus, Lateral,Occipitotemporal Gyrus, Lateral,Operculum, Temporal,Parainsular Areas,Region, Temporal,Sulcus, Temporal,Temporal Cortices,Temporal Gyrus, Inferior,Temporal Gyrus, Middle,Temporal Gyrus, Superior,Temporal Horns,Temporal Lobe, Anterior,Temporal Lobes,Temporal Lobes, Anterior,Temporal Regions
D014909 Wheat Germ Agglutinins Lectins purified from the germinating seeds of common wheat (Triticum vulgare); these bind to certain carbohydrate moieties on cell surface glycoproteins and are used to identify certain cell populations and inhibit or promote some immunological or physiological activities. There are at least two isoforms of this lectin. Agglutinins, Wheat Germ,Lectins, Triticum Vulgare,Lectins, Wheat Germ,Triticum Vulgare Lectin,Triticum Vulgare Lectins,Wheat Germ Agglutinin,Wheat Germ Lectin,Wheat Germ Lectins,Wheat Germ Agglutinin Isolectin 1,Wheat Germ Agglutinin Isolectin 2,Agglutinin, Wheat Germ,Germ Agglutinin, Wheat,Germ Lectin, Wheat,Lectin, Triticum Vulgare,Lectin, Wheat Germ,Vulgare Lectin, Triticum

Related Publications

R E Weller, and G E Steele
February 1987, The Journal of comparative neurology,
R E Weller, and G E Steele
August 1993, The Journal of comparative neurology,
R E Weller, and G E Steele
January 1988, Visual neuroscience,
R E Weller, and G E Steele
April 1992, The Journal of comparative neurology,
R E Weller, and G E Steele
January 1994, Visual neuroscience,
Copied contents to your clipboard!