Repair of X-ray induced DNA strand damage by isolated rat splenic lymphocytes. 1992

T P Coogan, and J Motz, and N T Christie
Institute of Environmental Medicine, New York University Medical Center, NY 10016.

Although a number of chemicals can alter DNA repair function, little is known about the effect of chronic, low dose exposure to environmental agents on DNA repair capacity. Lymphocytes provide a potential target population to study the effects of chronic exposures to low doses of toxic chemicals since they are an easily obtainable cell population. Prior to investigating the repair capacity of chemically exposed lymphocytes, the repair by chemically naive lymphocytes has been characterized. In the present study, the DNA repair capacity of isolated rat lymphocytes was characterized. The capacity of these cells to repair single-strand DNA breaks (SSB) was determined after in vitro treatments with X-rays. The effect of in vitro exposure to 3-aminobenzamide (3-AB) on DNA repair capacity was also assessed. The levels of induced SSB and their repair were determined using the alkaline elution technique. Splenic lymphocytes were isolated and placed in culture medium 18 h prior to assessment of repair capacity, but were not stimulated with mitogens. A dose-dependent increase in SSB was observed following exposure of lymphocytes to 300 or 600 rad. The rate of SSB repair was analyzed after a dose of 400 rad. Approximately 80% of the DNA strand break repair was completed within 60 min. The half-time for repair of these lesions by lymphocytes was determined to be 21.3 min. Exposure to 3-AB resulted in a decrease in the rate of repair of the X-ray-induced strand breakage. Although no SSB were detected at the end of a 1-h 3-AB treatment of non-irradiated cells, significant accumulation of SSB was observed after a 2-h treatment. The characterization of DNA repair in rat lymphocytes following in vitro exposure to X-rays will allow us to investigate the effects of chronic, in vivo toxicant exposure on the capacity of isolated lymphocytes to repair DNA damage produced by X-rays.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008297 Male Males
D011838 Radiation-Sensitizing Agents Drugs used to potentiate the effectiveness of radiation therapy in destroying unwanted cells. Radiation Sensitizer,Radiosensitizing Agent,Radiosensitizing Agents,Agents, Radiation-Sensitizing,Radiation Sensitizers,Radiation Sensitizing Agents,Radiation-Sensitizing Drugs,Radiation-Sensitizing Effect,Radiation-Sensitizing Effects,Radiosensitizing Drugs,Radiosensitizing Effect,Radiosensitizing Effects,Agent, Radiosensitizing,Agents, Radiation Sensitizing,Agents, Radiosensitizing,Drugs, Radiation-Sensitizing,Drugs, Radiosensitizing,Effect, Radiation-Sensitizing,Effect, Radiosensitizing,Effects, Radiation-Sensitizing,Effects, Radiosensitizing,Radiation Sensitizing Drugs,Radiation Sensitizing Effect,Radiation Sensitizing Effects,Sensitizer, Radiation,Sensitizers, Radiation,Sensitizing Agents, Radiation
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001549 Benzamides BENZOIC ACID amides.
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.

Related Publications

T P Coogan, and J Motz, and N T Christie
April 1980, Pediatric research,
T P Coogan, and J Motz, and N T Christie
January 1992, Radiation and environmental biophysics,
T P Coogan, and J Motz, and N T Christie
June 1982, International journal of radiation biology and related studies in physics, chemistry, and medicine,
T P Coogan, and J Motz, and N T Christie
November 2000, International journal of radiation biology,
T P Coogan, and J Motz, and N T Christie
January 1981, Radiation research,
T P Coogan, and J Motz, and N T Christie
March 1978, Radiation research,
T P Coogan, and J Motz, and N T Christie
October 1989, Radiation research,
T P Coogan, and J Motz, and N T Christie
August 2008, The Journal of chemical physics,
T P Coogan, and J Motz, and N T Christie
May 1971, Science (New York, N.Y.),
T P Coogan, and J Motz, and N T Christie
July 1973, Current topics in radiation research quarterly,
Copied contents to your clipboard!