Effects of (-)-2'-deoxy-3'-thiacytidine (3TC) 5'-triphosphate on human immunodeficiency virus reverse transcriptase and mammalian DNA polymerases alpha, beta, and gamma. 1992

G J Hart, and D C Orr, and C R Penn, and H T Figueiredo, and N M Gray, and R E Boehme, and J M Cameron
Department of Virology, Glaxo Group Research Ltd., Greenford, United Kingdom.

(-)-2'-Deoxy-3'-thiacytidine (3TC) is a selective inhibitor of human immunodeficiency virus replication in vitro (J. A. V. Coates, N. Cammack, H. J. Jenkinson, A. J. Jowett, M. I. Jowett, B. A. Pearson, C. R. Penn, P. L. Rouse, K. C. Viner, and J. M. Cameron, Antimicrob. Agents Chemother. 36:733-739, 1992). The effect of 3TC 5'-triphosphate on both the RNA-dependent and DNA-dependent activities of human immunodeficiency virus type 1 reverse transcriptase and DNA polymerases alpha, beta, and gamma from HeLa cells was investigated. 3TC 5'-triphosphate is a competitive inhibitor (with respect to dCTP) of the RNA-dependent DNA polymerase activity (apparent Ki = 10.6 +/- 1.0 to 1.24 +/- 5.1 microM, depending on the template and primer used); the DNA-dependent DNA polymerase activity is 50% inhibited by a 3TC 5'-triphosphate concentration of 23.4 +/- 2.5 microM when dCTP is present at a concentration equal to its Km value. Chain elongation studies show that 3TC 5'-triphosphate is incorporated into newly synthesized DNA and that transcription is terminated in a manner identical to that found for ddCTP. The 50% inhibitory concentrations of 3TC 5'-triphosphate against DNA polymerases alpha, beta, and gamma at concentrations of dCTP equal to the Km were 175 +/- 31, 24.8 +/- 10.9, and 43.8 +/- 16.4 microM, respectively. More detailed kinetic studies with 3TC 5'-triphosphate and DNA polymerases beta and gamma are consistent with the fact that inhibition of these enzymes by 3TC 5'-triphosphate is competitive with respect to dCTP. The values of Ki were determined to be 18.7 microM for DNA polymerase beta and 15.8 +/- 0.8 microM for DNA polymerase gamma.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D010443 Peptide Chain Termination, Translational A process of GENETIC TRANSLATION whereby the terminal amino acid is added to a lengthening polypeptide. This termination process is signaled from the MESSENGER RNA, by one of three termination codons (CODON, TERMINATOR) that immediately follows the last amino acid-specifying CODON. Chain Termination, Peptide, Translational,Protein Biosynthesis Termination,Protein Chain Termination, Translational,Protein Translation Termination,Translation Termination, Genetic,Translation Termination, Protein,Translational Peptide Chain Termination,Translational Termination, Protein,Biosynthesis Termination, Protein,Genetic Translation Termination,Protein Translational Termination,Termination, Genetic Translation,Termination, Protein Biosynthesis,Termination, Protein Translation,Termination, Protein Translational
D011131 Polyribonucleotides A group of 13 or more ribonucleotides in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D004258 DNA Polymerase III A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms but may be present in higher organisms. Use also for a more complex form of DNA polymerase III designated as DNA polymerase III* or pol III* which is 15 times more active biologically than DNA polymerase I in the synthesis of DNA. This polymerase has both 3'-5' and 5'-3' exonuclease activities, is inhibited by sulfhydryl reagents, and has the same template-primer dependence as pol II. DNA Polymerase delta,DNA-Dependent DNA Polymerase III,DNA Pol III,DNA Dependent DNA Polymerase III,Polymerase III, DNA,Polymerase delta, DNA
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated

Related Publications

G J Hart, and D C Orr, and C R Penn, and H T Figueiredo, and N M Gray, and R E Boehme, and J M Cameron
January 1993, Nucleic acids symposium series,
G J Hart, and D C Orr, and C R Penn, and H T Figueiredo, and N M Gray, and R E Boehme, and J M Cameron
September 1995, Biochemical pharmacology,
G J Hart, and D C Orr, and C R Penn, and H T Figueiredo, and N M Gray, and R E Boehme, and J M Cameron
February 1992, The Journal of biological chemistry,
G J Hart, and D C Orr, and C R Penn, and H T Figueiredo, and N M Gray, and R E Boehme, and J M Cameron
January 1992, Nucleic acids symposium series,
G J Hart, and D C Orr, and C R Penn, and H T Figueiredo, and N M Gray, and R E Boehme, and J M Cameron
June 1993, Biochemistry,
G J Hart, and D C Orr, and C R Penn, and H T Figueiredo, and N M Gray, and R E Boehme, and J M Cameron
February 1990, Molecular pharmacology,
G J Hart, and D C Orr, and C R Penn, and H T Figueiredo, and N M Gray, and R E Boehme, and J M Cameron
November 1990, The Journal of biological chemistry,
G J Hart, and D C Orr, and C R Penn, and H T Figueiredo, and N M Gray, and R E Boehme, and J M Cameron
March 1998, Bioorganic & medicinal chemistry letters,
G J Hart, and D C Orr, and C R Penn, and H T Figueiredo, and N M Gray, and R E Boehme, and J M Cameron
July 1992, Journal of biochemistry,
Copied contents to your clipboard!