Overexpression of pp60c-src is associated with altered regulation of adenylyl cyclase. 1992

D K Luttrell, and W P Hausdorff, and J E Moyers, and T M Gilmer, and S J Parsons, and M G Caron, and R J Lefkowitz
Glaxo Research Institute, Department of Cell Biology, Research Triangle Park, NC 27709.

The ability of activators of the beta-adrenergic receptor to elevate intracellular cAMP levels in murine fibroblasts is enhanced upon overexpression of avian c-src [Bushman et al. (1990) Proc. natn. Acad. Sci. U.S.A. 87, 7462-7466]. To investigate the molecular basis for this effect, we prepared particulate fractions from control and pp60c-src overexpressing C3H10T1/2 fibroblasts and assessed the relative abilities of several activators of the beta-adrenergic receptor-Gs-adenylyl cyclase (AC) signal transduction pathway to stimulate the enzymatic response. Two- to three-fold increases in both the sensitivity and maximum responsiveness of AC to the beta-adrenergic agonist isoproterenol were consistently observed in fractions prepared from the c-src overexpressing cells. Interestingly, the AC response to two agents believed to act directly at the level of the G protein were either enhanced (NaF) or unaffected (GTP gamma S) by c-src overexpression. Finally, overexpression of c-src was associated with a reduced ability of both Mn2+ and forskolin to activate AC directly. These results suggest that overexpression of wild type c-src may affect two distinct steps in the regulation of AC exerting a positive effect at the level of Gs activation and a negative effect on AC itself. As no differences in the relative number or affinity of beta-adrenergic receptors, or in the level of AC, Gs alpha or G beta, were detected between control cells and those overexpressing c-src, we propose that pp60c-src overexpression results in a modification of one or more components in this signal transduction pathway.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016392 Proto-Oncogene Proteins pp60(c-src) Membrane-associated tyrosine-specific kinases encoded by the c-src genes. They have an important role in cellular growth control. Truncation of carboxy-terminal residues in pp60(c-src) leads to PP60(V-SRC) which has the ability to transform cells. This kinase pp60 c-src should not be confused with csk, also known as c-src kinase. c-src Protein pp60,pp60(c-src),src Proto-Oncogene Protein pp60,Phosphoprotein pp60(c-src),Proto-Oncogene Protein pp60(c-src),Proto-Oncogene Protein src,pp60 c-src,src Proto-Oncogene Product,Protein pp60, c-src,Protein src, Proto-Oncogene,Proto Oncogene Protein src,Proto-Oncogene Product, src,c src Protein pp60,c-src, pp60,pp60 c src,pp60, c-src Protein,src Proto Oncogene Product,src Proto Oncogene Protein pp60
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

D K Luttrell, and W P Hausdorff, and J E Moyers, and T M Gilmer, and S J Parsons, and M G Caron, and R J Lefkowitz
February 2016, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D K Luttrell, and W P Hausdorff, and J E Moyers, and T M Gilmer, and S J Parsons, and M G Caron, and R J Lefkowitz
March 1986, Science (New York, N.Y.),
D K Luttrell, and W P Hausdorff, and J E Moyers, and T M Gilmer, and S J Parsons, and M G Caron, and R J Lefkowitz
May 1986, Molecular and cellular biology,
D K Luttrell, and W P Hausdorff, and J E Moyers, and T M Gilmer, and S J Parsons, and M G Caron, and R J Lefkowitz
March 1988, Cell,
D K Luttrell, and W P Hausdorff, and J E Moyers, and T M Gilmer, and S J Parsons, and M G Caron, and R J Lefkowitz
January 1992, The Journal of comparative neurology,
D K Luttrell, and W P Hausdorff, and J E Moyers, and T M Gilmer, and S J Parsons, and M G Caron, and R J Lefkowitz
November 1987, Molecular and cellular biology,
D K Luttrell, and W P Hausdorff, and J E Moyers, and T M Gilmer, and S J Parsons, and M G Caron, and R J Lefkowitz
January 1985, Journal of virology,
D K Luttrell, and W P Hausdorff, and J E Moyers, and T M Gilmer, and S J Parsons, and M G Caron, and R J Lefkowitz
March 1992, Oncogene,
D K Luttrell, and W P Hausdorff, and J E Moyers, and T M Gilmer, and S J Parsons, and M G Caron, and R J Lefkowitz
February 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
D K Luttrell, and W P Hausdorff, and J E Moyers, and T M Gilmer, and S J Parsons, and M G Caron, and R J Lefkowitz
March 2006, Molecular reproduction and development,
Copied contents to your clipboard!