Maturation of murine erythroleukemia cells committed to differentiation requires protein kinase C. 1992

B GuptaRoy, and C M Cohen
Department of Biomedical Research, St. Elizabeth's Hospital of Boston, Massachusetts 02135.

Treatment of murine erythroleukemia cells (MELC) attached to fibronectin-coated dishes with dimethyl sulfoxide causes the cells to become committed to the erythroid differentiation pathway. These cells mature extensively and acquire the characteristics of erythroid cells. The cells lose their cell-surface fibronectin receptors and accumulate red cell-specific membrane proteins, such as band 3, in amounts comparable to those in erythrocytes. Previous studies of MELC have shown that the presence of protein kinase C (PKC) is required for commitment to differentiation, but that the level of PKC activity declines progressively during maturation. In this study, we have established a role for PKC in the maturation of MELC committed to differentiation. Our results show that down-regulation of PKC by addition of phorbol 12-myristate 13-acetate (PMA) to committed MELC blocks subsequent maturation of the cells. Treatment of MELC with the PKC inhibitors H7 and sphingosine had similar effects. Down-regulation of PKC was assayed by measuring cytosolic PKC activity as well as by Western blotting using PKC antibodies. MELC maturation was monitored by loss of the cell-surface fibronectin receptor, release of cells from fibronectin plates, and accumulation of the band 3 anion transport protein. Immunoprecipitation of surface-labeled proteins by an anti-fibronectin receptor (integrin) antibody showed that PMA-treated cultures had more fibronectin receptor protein than untreated cultures 6 days post-induction. As a result, cultures of committed MELC treated with PMA remained attached to fibronectin-coated plates, whereas non-PMA-treated cells were released into the culture medium. Furthermore, PKC-depleted cells accumulated much smaller amounts of band 3 protein and band 3 mRNA than did non-PKC-depleted controls. Our results show that although PKC activity declines progressively during post-commitment maturation of MELC, its continued presence is critical for the process of cellular maturation.

UI MeSH Term Description Entries
D010750 Phosphoproteins Phosphoprotein
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004915 Leukemia, Erythroblastic, Acute A myeloproliferative disorder characterized by neoplastic proliferation of erythroblastic and myeloblastic elements with atypical erythroblasts and myeloblasts in the peripheral blood. Di Guglielmo's Disease,Erythremic Myelosis,Erythroblastic Leukemia, Acute,Erythroleukemia,Leukemia, Myeloid, Acute, M6,Myeloid Leukemia, Acute, M6,Di Guglielmo Disease,Acute Erythroblastic Leukemia,Acute Erythroblastic Leukemias,Di Guglielmos Disease,Disease, Di Guglielmo,Disease, Di Guglielmo's,Erythremic Myeloses,Erythroblastic Leukemias, Acute,Erythroleukemias,Leukemia, Acute Erythroblastic,Leukemias, Acute Erythroblastic,Myeloses, Erythremic,Myelosis, Erythremic
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001457 Anion Exchange Protein 1, Erythrocyte A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS. Anion Transport Protein, Erythrocyte,Band 3 Protein,Erythrocyte Anion Transport Protein,Erythrocyte Membrane Band 3 Protein,AE1 Anion Exchanger,AE1 Chloride-Bicarbonate Exchanger,AE1 Cl- HCO3- Exchanger,AE1 Gene Product,Anion Exchanger 1,Antigens, CD233,Band 3 Anion Transport Protein,Band III Protein,CD233 Antigen,CD233 Antigens,Capnophorin,EPB3 Protein,Erythrocyte Anion Exchanger,Erythrocyte Membrane Anion Transport Protein,Erythrocyte Membrane Protein Band 3, Diego Blood Group,Protein Band 3,SLC4A1 Protein,Solute Carrier Family 4 Member 1,Solute Carrier Family 4, Anion Exchanger, Member 1,AE1 Chloride Bicarbonate Exchanger,AE1 Cl HCO3 Exchanger,Anion Exchanger, Erythrocyte,Antigen, CD233,Chloride-Bicarbonate Exchanger, AE1,Exchanger 1, Anion,Protein, EPB3

Related Publications

B GuptaRoy, and C M Cohen
March 1996, Biochemical and biophysical research communications,
B GuptaRoy, and C M Cohen
June 1990, Proceedings of the National Academy of Sciences of the United States of America,
B GuptaRoy, and C M Cohen
January 1992, Proceedings of the National Academy of Sciences of the United States of America,
B GuptaRoy, and C M Cohen
August 1987, Proceedings of the National Academy of Sciences of the United States of America,
B GuptaRoy, and C M Cohen
November 1989, The Journal of biological chemistry,
B GuptaRoy, and C M Cohen
October 1987, Molecular and cellular biochemistry,
B GuptaRoy, and C M Cohen
March 1992, Journal of cell science,
Copied contents to your clipboard!