Ras controls coupling of growth factor receptors and protein kinase C in the membrane to Raf-1 and B-Raf protein serine kinases in the cytosol. 1992

J Troppmair, and J T Bruder, and H App, and H Cai, and L Liptak, and J Szeberényi, and G M Cooper, and U R Rapp
Viral Pathology Section, National Cancer Institute, Frederick, Maryland 21702-1201.

A dominant negative mutant of Ras, M17 Ras, was used to study the role of Ras in receptor coupling of Raf-1 and B-Raf protein serine/threonine kinases (PSKs). We found that mutant Ras blocks serum- and 12-O-tetradecanoyl phorbol 13-acetate-induced activation of Raf-1 kinase in NIH3T3 cells and Raf-1 as well as B-Raf PSK stimulation by nerve growth factor (NGF) in PC12 pheochromocytoma cells. Mitogen stimulation of Raf kinase was measured by determination of Raf hyperphosphorylation and activity towards exogenous substrates and both of these events were inhibited in cells expressing M17 Ras. In contrast, tyrosine phosphorylation of a direct substrate of activated tyrosine kinase receptors, phospholipase C-gamma 1 (PLC-gamma 1), was unaffected. These data indicate that tyrosine phosphorylation of PLC-gamma 1 is not sufficient for growth induction in NIH3T3 cells and that Ras mediates signal transfer from activated membrane receptors to Raf kinases in the cytosol. As activated Raf induced differentiation in PC12 cells expressing M17 Ras we conclude that Raf kinase activation may be sufficient to account for this aspect of NGF function.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D001790 Blood Physiological Phenomena Physiological processes and properties of the BLOOD. Blood Physiologic Processes,Blood Physiological Processes,Blood Physiology,Blood Physiological Concepts,Blood Physiological Phenomenon,Physiology, Blood,Blood Physiological Concept,Blood Physiological Phenomenas,Concept, Blood Physiological,Concepts, Blood Physiological,Phenomena, Blood Physiological,Phenomenon, Blood Physiological,Physiologic Processes, Blood,Physiological Concept, Blood,Physiological Concepts, Blood,Physiological Phenomenon, Blood,Processes, Blood Physiologic,Processes, Blood Physiological
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols

Related Publications

J Troppmair, and J T Bruder, and H App, and H Cai, and L Liptak, and J Szeberényi, and G M Cooper, and U R Rapp
June 1996, Digestive diseases and sciences,
J Troppmair, and J T Bruder, and H App, and H Cai, and L Liptak, and J Szeberényi, and G M Cooper, and U R Rapp
March 1992, Cell,
J Troppmair, and J T Bruder, and H App, and H Cai, and L Liptak, and J Szeberényi, and G M Cooper, and U R Rapp
April 1991, Oncogene,
J Troppmair, and J T Bruder, and H App, and H Cai, and L Liptak, and J Szeberényi, and G M Cooper, and U R Rapp
January 1986, Cold Spring Harbor symposia on quantitative biology,
J Troppmair, and J T Bruder, and H App, and H Cai, and L Liptak, and J Szeberényi, and G M Cooper, and U R Rapp
August 1994, Seminars in cancer biology,
J Troppmair, and J T Bruder, and H App, and H Cai, and L Liptak, and J Szeberényi, and G M Cooper, and U R Rapp
May 1996, The Journal of biological chemistry,
J Troppmair, and J T Bruder, and H App, and H Cai, and L Liptak, and J Szeberényi, and G M Cooper, and U R Rapp
February 1997, The Journal of biological chemistry,
J Troppmair, and J T Bruder, and H App, and H Cai, and L Liptak, and J Szeberényi, and G M Cooper, and U R Rapp
December 2009, Biochemical and biophysical research communications,
J Troppmair, and J T Bruder, and H App, and H Cai, and L Liptak, and J Szeberényi, and G M Cooper, and U R Rapp
February 1997, Molecular and cellular biology,
J Troppmair, and J T Bruder, and H App, and H Cai, and L Liptak, and J Szeberényi, and G M Cooper, and U R Rapp
April 1998, Science (New York, N.Y.),
Copied contents to your clipboard!