Determination of DNA ploidy in archival tissue from non-Hodgkin's lymphoma using flow and image cytometry. 1992

I Zbieranowski, and J C Le Riche, and B Palcic, and R Gascoyne, and J Connors
Division of Cytology, British Columbia Cancer Agency, Vancouver Clinic, Canada.

Paraffin-embedded tissue from a series of 40 cases of diffuse, large cell lymphoma was analyzed by both flow and image cytometry to compare the ability of these techniques to detect DNA aneuploid populations. Image cytometry (ICM) was performed both on nuclear suspensions and tissue sections. Twenty cases (50%) were non-diploid by at least one method of analysis. Twenty-five percent of the cases were aneuploid by flow cytometry (FCM) alone. The majority of these cases were near-diploid tumors which could not be resolved by ICM. Peri-tetraploid peaks were identified by ICM of tissue sections alone in 15% of the cases. There was an apparent loss of these peri-tetraploid cells during the preparation of the nuclear suspensions. The remaining cases showed a good correlation between all three methods in the determination of DNA ploidy. Flow and image cytometry are complimentary techniques when applied to archival tissue, however aneuploid populations may be missed if ICM is not performed on tissue sections.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000782 Aneuploidy The chromosomal constitution of cells which deviate from the normal by the addition or subtraction of CHROMOSOMES, chromosome pairs, or chromosome fragments. In a normally diploid cell (DIPLOIDY) the loss of a chromosome pair is termed nullisomy (symbol: 2N-2), the loss of a single chromosome is MONOSOMY (symbol: 2N-1), the addition of a chromosome pair is tetrasomy (symbol: 2N+2), the addition of a single chromosome is TRISOMY (symbol: 2N+1). Aneuploid,Aneuploid Cell,Aneuploid Cells,Aneuploidies,Aneuploids,Cell, Aneuploid,Cells, Aneuploid
D013048 Specimen Handling Procedures for collecting, preserving, and transporting of specimens sufficiently stable to provide accurate and precise results suitable for clinical interpretation. Specimen Collection,Collection, Specimen,Collections, Specimen,Handling, Specimen,Handlings, Specimen,Specimen Collections,Specimen Handlings
D016403 Lymphoma, Large B-Cell, Diffuse Malignant lymphoma composed of large B lymphoid cells whose nuclear size can exceed normal macrophage nuclei, or more than twice the size of a normal lymphocyte. The pattern is predominantly diffuse. Most of these lymphomas represent the malignant counterpart of B-lymphocytes at midstage in the process of differentiation. Diffuse Large B-Cell Lymphoma,Diffuse, Large B-Cell, Lymphoma,Histiocytic Lymphoma, Diffuse,Lymphoma, Histiocytic, Diffuse,Diffuse Large-Cell Lymphoma,Histiocytic Lymphoma,Large Lymphoid Lymphoma, Diffuse,Large-Cell Lymphoma, Diffuse,Lymphoma, Diffuse Large-Cell,Lymphoma, Histiocytic,Lymphoma, Large Cell, Diffuse,Lymphoma, Large Lymphoid, Diffuse,Lymphoma, Large-Cell, Diffuse,Diffuse Histiocytic Lymphoma,Diffuse Histiocytic Lymphomas,Diffuse Large B Cell Lymphoma,Diffuse Large Cell Lymphoma,Diffuse Large-Cell Lymphomas,Histiocytic Lymphomas,Large Cell Lymphoma, Diffuse,Lymphoma, Diffuse Histiocytic,Lymphoma, Diffuse Large Cell

Related Publications

I Zbieranowski, and J C Le Riche, and B Palcic, and R Gascoyne, and J Connors
March 1991, Journal of clinical pathology,
I Zbieranowski, and J C Le Riche, and B Palcic, and R Gascoyne, and J Connors
March 1996, AJR. American journal of roentgenology,
I Zbieranowski, and J C Le Riche, and B Palcic, and R Gascoyne, and J Connors
January 1992, Journal of Tongji Medical University = Tong ji yi ke da xue xue bao,
I Zbieranowski, and J C Le Riche, and B Palcic, and R Gascoyne, and J Connors
November 1989, Pathology, research and practice,
I Zbieranowski, and J C Le Riche, and B Palcic, and R Gascoyne, and J Connors
September 1995, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc,
I Zbieranowski, and J C Le Riche, and B Palcic, and R Gascoyne, and J Connors
October 1987, European journal of cancer & clinical oncology,
I Zbieranowski, and J C Le Riche, and B Palcic, and R Gascoyne, and J Connors
June 1994, Pathology, research and practice,
I Zbieranowski, and J C Le Riche, and B Palcic, and R Gascoyne, and J Connors
January 1985, Hematological oncology,
I Zbieranowski, and J C Le Riche, and B Palcic, and R Gascoyne, and J Connors
September 1986, Journal of clinical pathology,
I Zbieranowski, and J C Le Riche, and B Palcic, and R Gascoyne, and J Connors
October 1985, Journal of clinical pathology,
Copied contents to your clipboard!