Testing models for transport systems dependent on periplasmic binding proteins. 1992

R M Krupka
Research Centre, Agriculture Canada, London.

A carrier model in which transport across the cytoplasmic membrane is mediated by a periplasmic binding protein (Krupka, R.M. (1992) Biochim. Biophys. Acta 1110, 1-10) is shown to account for many of the properties of these systems: (i) Michaelis-Menten kinetics; (ii) seemingly irreversible uptake; (iii) the absence of exchange transport and counter-transport; (iv) substrate half-saturation constants that in different systems may be lower or higher than the dissociation constant of the binding protein; (v) the high concentration of the binding protein in the periplasm and its weak association with the membrane component. The binding protein appears to function as a valve or rectifier that permits the substrate to enter the cell, but blocks exit in both the energized and de-energized states. The asymmetry depends on both the abruptness and the extent of the conformational change in the binding protein. Characteristically, these systems build up steep gradients across the membrane, circumstances in which such a valve might be important. In agreement with the mechanism, (a) the binding protein is missing in members of the same family of transporters that function in export of the substrate rather than import; and (b) in Gram-positive organisms, which have no periplasmic space, binding proteins function while anchored to the cytoplasmic membrane.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

R M Krupka
January 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
R M Krupka
July 1995, Protein science : a publication of the Protein Society,
R M Krupka
November 1989, Proceedings of the National Academy of Sciences of the United States of America,
R M Krupka
January 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
R M Krupka
May 1988, Archives of biochemistry and biophysics,
R M Krupka
August 1990, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!