Inhibition of CD25 (IL-2R alpha) expression and T-cell proliferation by polyclonal anti-thymocyte globulins. 1992

N Bonnefoy-Berard, and B Verrier, and C Vincent, and J P Revillard
Laboratory of Immunology, INSERM U80 CNRS URA 177 UCBL, Lyon, France.

Anti-lymphocyte and anti-thymocyte globulins (ATG) are currently used as immunosuppressive agents in organ transplantation. Their administration in vivo may induce not only lymphocyte depletion but also functional effects which were investigated in the present study. In vitro ATG inhibited T-cell proliferation induced by monocyte-dependent T-cell mitogens, like CD3 antibodies, phytohaemagglutinin (PHA) and concanavalin A (Con A), by monocyte-independent mitogens, like CD2 antibodies, or by protein kinase C activators (phorbol esters) associated with a calcium ionophore. The inhibitory effect of ATG was therefore not solely accounted for by a suppression of co-stimulatory signals delivered by monocytes, but rather implied a direct action on T cells. Addition of recombinant human interleukin-2 (rIL-2) did not overcome the inhibition. Suppression of T-cell proliferation by ATG was characterized by normal RNA synthesis and IL-2 secretion contrasting with markedly reduced expression of the CD25 protein [p55, the alpha-chain of interleukin-2 receptor (IL-2R)] both in cytoplasm and on T-cell membrane, as well as a decreased secretion of interferon-gamma (IFN-gamma). Northern blot analysis revealed increased levels of CD25 and IFN-gamma mRNA, suggesting a post-transcriptional inhibition of these molecules, whereas IL-2 mRNA levels were unchanged. These data demonstrate that inhibition of T-cell proliferation by ATG can be attributed primarily to a post-transcriptional defect of CD25 expression, implying a novel mechanism different from those described with other immunosuppressive agents. Blocking of T-cell proliferation in the late G1 phase of the cell cycle may contribute to the immunosuppressive activity of ATG in prophylactic treatment of allograft rejection.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000938 Antigen-Presenting Cells A heterogeneous group of immunocompetent cells that mediate the cellular immune response by processing and presenting antigens to the T-cells. Traditional antigen-presenting cells include MACROPHAGES; DENDRITIC CELLS; LANGERHANS CELLS; and B-LYMPHOCYTES. FOLLICULAR DENDRITIC CELLS are not traditional antigen-presenting cells, but because they hold antigen on their cell surface in the form of IMMUNE COMPLEXES for B-cell recognition they are considered so by some authors. Accessory Cells, Immunologic,Antigen-Presenting Cell,Immunologic Accessory Cells,Accessory Cell, Immunologic,Cell, Immunologic Accessory,Cells, Immunologic Accessory,Immunologic Accessory Cell,Antigen Presenting Cell,Antigen Presenting Cells,Cell, Antigen-Presenting,Cells, Antigen-Presenting
D000961 Antilymphocyte Serum Serum containing GAMMA-GLOBULINS which are antibodies for lymphocyte ANTIGENS. It is used both as a test for HISTOCOMPATIBILITY and therapeutically in TRANSPLANTATION. ATGAM,Antilymphoblast Globulins,Antilymphocyte Antibodies,Antilymphocyte Globulin,Lymphocytotoxic Antibodies,Anti-Thymocyte Globulin,Antilymphocyte Immunoglobulin,Antithymocyte Globulin,Antithymoglobulin,Lymphocyte Immune Globulin, Anti-Thymocyte Globulin,Lymphocyte Immune Globulin, Anti-Thymocyte Globulin (Equine),Pressimmune,Anti Thymocyte Globulin,Anti-Thymocyte Globulins,Antibodies, Antilymphocyte,Antibodies, Lymphocytotoxic,Antibody, Antilymphocyte,Antibody, Lymphocytotoxic,Antilymphoblast Globulin,Antilymphocyte Antibody,Antilymphocyte Globulins,Antilymphocyte Immunoglobulins,Antilymphocyte Serums,Antithymocyte Globulins,Antithymoglobulins,Globulin, Anti-Thymocyte,Globulin, Antilymphoblast,Globulin, Antilymphocyte,Globulin, Antithymocyte,Globulins, Anti-Thymocyte,Globulins, Antilymphoblast,Globulins, Antilymphocyte,Globulins, Antithymocyte,Immunoglobulin, Antilymphocyte,Immunoglobulins, Antilymphocyte,Lymphocyte Immune Globulin, Anti Thymocyte Globulin,Lymphocytotoxic Antibody,Serum, Antilymphocyte,Serums, Antilymphocyte
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

N Bonnefoy-Berard, and B Verrier, and C Vincent, and J P Revillard
April 1993, The Journal of pharmacology and experimental therapeutics,
N Bonnefoy-Berard, and B Verrier, and C Vincent, and J P Revillard
December 2005, Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation,
N Bonnefoy-Berard, and B Verrier, and C Vincent, and J P Revillard
January 1996, Archivum immunologiae et therapiae experimentalis,
N Bonnefoy-Berard, and B Verrier, and C Vincent, and J P Revillard
April 1999, Journal of neuroimmunology,
N Bonnefoy-Berard, and B Verrier, and C Vincent, and J P Revillard
March 2009, Transplant immunology,
N Bonnefoy-Berard, and B Verrier, and C Vincent, and J P Revillard
September 2022, International immunopharmacology,
N Bonnefoy-Berard, and B Verrier, and C Vincent, and J P Revillard
October 2004, Journal of immunology (Baltimore, Md. : 1950),
N Bonnefoy-Berard, and B Verrier, and C Vincent, and J P Revillard
April 1997, Journal of immunology (Baltimore, Md. : 1950),
N Bonnefoy-Berard, and B Verrier, and C Vincent, and J P Revillard
May 1994, Journal of immunology (Baltimore, Md. : 1950),
N Bonnefoy-Berard, and B Verrier, and C Vincent, and J P Revillard
December 1994, The European respiratory journal,
Copied contents to your clipboard!