The effect of calcium ion transport ATPase upon the passive calcium ion permeability of phospholipid vesicles. 1977

R L Jilka, and A N Martonosi

The uptake and release of Ca2+ by sarcoplasmic reticulum fragments and reconstituted ATPase vesicles was measured by a stopped-flow fluorescence method using chlortetracycline as Ca2+ indicator. Incorporation of the Ca2+ transport ATPase into phospholipid bilayers of widely different fatty acid composition increases their passive permeability to Ca2+ by several orders of magnitude. Therefore in addition to participating in active Ca2+ transport, the (Mg2+ + Ca2+)-activated ATPase also forms hydrophilic channels across the membrane. The relative insensitivity of the permeability effect of ATPase to changes in the fatty acid composition of the membrane is in accord with the suggestion that the Ca2+ channels arise by protein-protein interaction between four ATPase molecules. The reversible formation of these channels may have physiological significance in the rapid Ca2+ release from the sarcoplasmic reticulum during activation of muscle.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

R L Jilka, and A N Martonosi
July 1981, Proceedings of the National Academy of Sciences of the United States of America,
R L Jilka, and A N Martonosi
June 1983, The Journal of biological chemistry,
R L Jilka, and A N Martonosi
November 2017, The Journal of biological chemistry,
R L Jilka, and A N Martonosi
June 1977, Biochemical and biophysical research communications,
R L Jilka, and A N Martonosi
January 1989, Ukrainskii biokhimicheskii zhurnal (1978),
R L Jilka, and A N Martonosi
December 1970, The Journal of membrane biology,
R L Jilka, and A N Martonosi
January 1986, Doklady Akademii nauk SSSR,
R L Jilka, and A N Martonosi
August 1986, Biokhimiia (Moscow, Russia),
R L Jilka, and A N Martonosi
September 1974, The Biochemical journal,
Copied contents to your clipboard!