Lipoprotein lipase in cultured heart cells: characteristics and cellular location. 1977

L C Henson, and M C Schotz, and I Harary

Lipase activity extracted from cultured neonatal rat heart cells was characterized and identified as lipoprotein lipase. Enzyme activity was stimulated by human apoC-II and rat serum; serum stimulation was prevented by human apoC-I and by apoC-II. Lipolysis was maximal at pH 8.0 and was inhibited by protamine sulfate, NaCl, and high concentrations of heparin. About 50% of heart cell lipase activity applied to heparin-Sepharose bound to the gel and was eluted with a NaCl gradient. A peak of lipase activity was observed at 0.84 M NaCl. Neonatal rat heart cells in culture are a mixture of muscle and non-muscle cells. To determine the cellular location of the lipoprotein lipase, enzyme activity and muscle cell content of the cultures were determined. Myosin ATPase was used as an index of muscle cell content since ATPase specific activity correlated (r = +0.97) with muscle cell content determined immunofluorescently. When muscle cell content of cultures was decreased or increased by differential plating, lipase specific activity was constant. Moreover, lipase specific activity was constant during culture growth despite a decrease in muscle cell content. It was concluded that lipoprotein lipase activity of cultured heart cells is not associated solely with either muscle or non-muslce cells.

UI MeSH Term Description Entries
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011479 Protamines A group of simple proteins that yield basic amino acids on hydrolysis and that occur combined with nucleic acid in the sperm of fish. Protamines contain very few kinds of amino acids. Protamine sulfate combines with heparin to form a stable inactive complex; it is used to neutralize the anticoagulant action of heparin in the treatment of heparin overdose. (From Merck Index, 11th ed; Martindale, The Extra Pharmacopoeia, 30th ed, p692) Protamine,Protamine Sulfate,Protamine Chloride,Chloride, Protamine,Sulfate, Protamine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005260 Female Females
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

L C Henson, and M C Schotz, and I Harary
January 1982, Annals of the New York Academy of Sciences,
L C Henson, and M C Schotz, and I Harary
January 1973, Biochimie,
L C Henson, and M C Schotz, and I Harary
January 1982, Arteriosclerosis (Dallas, Tex.),
L C Henson, and M C Schotz, and I Harary
September 1977, Biochemical and biophysical research communications,
L C Henson, and M C Schotz, and I Harary
October 1978, Biochimica et biophysica acta,
L C Henson, and M C Schotz, and I Harary
March 1978, Biochimica et biophysica acta,
L C Henson, and M C Schotz, and I Harary
October 1978, Biochemical and biophysical research communications,
L C Henson, and M C Schotz, and I Harary
January 1984, Arteriosclerosis (Dallas, Tex.),
L C Henson, and M C Schotz, and I Harary
March 1992, Comparative biochemistry and physiology. B, Comparative biochemistry,
L C Henson, and M C Schotz, and I Harary
October 1990, Clinical biochemistry,
Copied contents to your clipboard!