Fine structure of Myxococcus xanthus during morphogenesis. 1962

H VOELZ, and M DWORKIN

Voelz, Herbert (Indiana University Medical Center, Indianapolis) and Martin Dworkin. Fine structure of Myxococcus xanthus during morphogenesis. J. Bacteriol. 84:943-952. 1962.-This investigation concerns the nature of the structural changes in Myxococcus xanthus during cellular morphogenesis. These changes have been investigated by means of electromicrographs of thin sections of cells taken during various stages of the life cycle. The conversion of vegetative cells to microcysts involves the formation of a capsule but no drastic reorganization of the limiting cell membranes. Vacuoles appear in the cell during microcyst formation and germination. Microcyst germination involves a separation of the inner cell and the outer sheath, followed by the dissolution of a segment of the outer sheath and the emergence of the cell. Dense bodies within the cytoplasm and peripheral bodies between the two limiting membranes have been observed.

UI MeSH Term Description Entries
D008853 Microscopy The use of instrumentation and techniques for visualizing material and details that cannot be seen by the unaided eye. It is usually done by enlarging images, transmitted by light or electron beams, with optical or magnetic lenses that magnify the entire image field. With scanning microscopy, images are generated by collecting output from the specimen in a point-by-point fashion, on a magnified scale, as it is scanned by a narrow beam of light or electrons, a laser, a conductive probe, or a topographical probe. Compound Microscopy,Hand-Held Microscopy,Light Microscopy,Optical Microscopy,Simple Microscopy,Hand Held Microscopy,Microscopy, Compound,Microscopy, Hand-Held,Microscopy, Light,Microscopy, Optical,Microscopy, Simple
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D016940 Myxococcus A genus of gliding bacteria that are common inhabitants on tree bark and decomposing vegetation. The cells are slender rods with tapering ends.
D016941 Myxococcus xanthus A species of gliding bacteria found on soil as well as in surface fresh water and coastal seawater.

Related Publications

H VOELZ, and M DWORKIN
June 1968, Journal of bacteriology,
H VOELZ, and M DWORKIN
December 1967, Journal of bacteriology,
H VOELZ, and M DWORKIN
April 1976, Archives of microbiology,
H VOELZ, and M DWORKIN
July 1963, Journal of bacteriology,
H VOELZ, and M DWORKIN
November 1978, Journal of bacteriology,
H VOELZ, and M DWORKIN
February 1971, Canadian journal of microbiology,
H VOELZ, and M DWORKIN
December 2000, Current opinion in microbiology,
H VOELZ, and M DWORKIN
July 1982, Journal of bacteriology,
H VOELZ, and M DWORKIN
December 2003, Journal of microbiological methods,
Copied contents to your clipboard!