Interpretation of the X-ray diffraction pattern from relaxed skeletal muscle and modelling of the thick filament structure. 1992

S B Malinchik, and V V Lednev
Institute of Biological Physics, Academy of Sciences, Pushchino, Moscow, Russia.

The first part of this paper is devoted to the model-building studies of our high resolution meridional X-ray diffraction patterns (in the region from 1/500 to 1/50 A-1) obtained from relaxed frog muscle. A one-dimensional model of thick filament was proposed which basically consists of two symmetrical arrays of 50 crossbridge crown projections. In the proximate and central zones of the filament the crossbridge crowns are regularly shifted with a 429 A period and appear as triplets with a 130 A distance between crowns, while the crowns in the distal parts of filament are regularly ordered with a 143 A repeat. The centre-to-centre distance between regions with crossbridge perturbations is 7050 A. The length of each crown projection is about 125 A. The model includes also (1) C-protein component represented in each half of the filament by seven stripes of about 350 A long and located 429 A apart, (2) a uniform density of filament backbone of about 1.5 micron length, and (3) 13 high density stripes in a central zone located with 223 A period. The final model explains very well the positions and intensities of the main meridional reflections. A three-dimensional model of crossbridge configuration is described in the second part of the work. The model was constructed by using the intensity profiles of the first six myosin layer lines of the X-ray pattern from stretched muscle and taking into account the crossbridge perturbations and the axial size of crossbridge crown obtained from the one-dimensional studies.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012518 Sarcomeres The repeating contractile units of the MYOFIBRIL, delimited by Z bands along its length. Sarcomere
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

S B Malinchik, and V V Lednev
September 2008, Biophysical journal,
S B Malinchik, and V V Lednev
November 2006, Biophysical journal,
S B Malinchik, and V V Lednev
August 2002, Biophysical journal,
S B Malinchik, and V V Lednev
January 1984, Advances in experimental medicine and biology,
S B Malinchik, and V V Lednev
September 1985, Journal of molecular biology,
S B Malinchik, and V V Lednev
January 1993, Journal of molecular biology,
S B Malinchik, and V V Lednev
October 1989, Journal of muscle research and cell motility,
Copied contents to your clipboard!