Human pre-B and B cell membrane mu-chains are noncovalently associated with a disulfide-linked complex containing a product of the B29 gene. 1992

M R Clark, and R J Friedrich, and K S Campbell, and J C Cambier
National Jewish Center for Immunology and Respiratory Medicine, Department of Pediatrics, Denver, CO 80206.

B cell activation after Ag binding to membrane Ig (mIg) is mediated by a complex series of events that involves proximal activation of a tyrosine kinase and phospholipase C. Until recently it was unclear how mIgM and mIgD, with their limited cytoplasmic domains (three amino acids on each H chain), were able to couple to these secondary signal transducers. Studies of murine B cells conducted in several laboratories, including our own, suggest that products of the mb-1 (IgM-alpha or IgD-alpha) and B29 (Ig-beta, Ig-gamma) genes occur as disulfide-linked alpha/beta and alpha/gamma heterodimers that are noncovalently associated with mIgM and mIgD. Although studies utilizing Daudi and Raji cell lines indicate that human mIgM is also associated with a dimer containing the mb-1 gene product, the other molecules associated with the human receptor have not been identified. In this report we characterize the phosphoproteins that are noncovalently associated with mIgM on human tonsillar B cells and human pre-B cell lines. mIgM is noncovalently associated with a disulfide-linked heterodimer composed of variably glycosylated forms of two core proteins with apparent molecular mass of 26.5 and 27 kDa. Western blotting analysis reveals that the lower m.w. component of each of the mIgM-associated heterodimers and its 27-kDa deglycosylated core protein are reactive with antibodies against the murine B29 gene product. Thus, a product of the B29 gene is a component of the AgR complex in human and murine B cells, occurring as a disulfide linked dimer with product(s) of the mb-1 gene. Interestingly, mb-1 and B29 gene products expressed on human cells are much more heterogenously N-glycosylated than their murine B cell counterparts.

UI MeSH Term Description Entries
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D007148 Immunoglobulin mu-Chains The class of heavy chains found in IMMUNOGLOBULIN M. They have a molecular weight of approximately 72 kDa and they contain about 57 amino acid residues arranged in five domains and have more oligosaccharide branches and a higher carbohydrate content than the heavy chains of IMMUNOGLOBULIN G. Ig mu Chains,Immunoglobulins, mu-Chain,Immunoglobulin mu-Chain,mu Immunoglobulin Heavy Chain,mu Immunoglobulin Heavy Chains,mu-Chain Immunoglobulins,Chains, Ig mu,Immunoglobulin mu Chain,Immunoglobulin mu Chains,Immunoglobulins, mu Chain,mu Chain Immunoglobulins,mu Chains, Ig,mu-Chain, Immunoglobulin,mu-Chains, Immunoglobulin
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011947 Receptors, Antigen, B-Cell IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment. Antigen Receptors, B-Cell,B-Cell Antigen Receptor,B-Cell Antigen Receptors,Surface Immunoglobulin,Immunoglobulins, Membrane-Bound,Immunoglobulins, Surface,Membrane Bound Immunoglobulin,Membrane-Bound Immunoglobulins,Receptors, Antigen, B Cell,Surface Immunoglobulins,Antigen Receptor, B-Cell,Antigen Receptors, B Cell,B Cell Antigen Receptor,B Cell Antigen Receptors,Bound Immunoglobulin, Membrane,Immunoglobulin, Membrane Bound,Immunoglobulin, Surface,Immunoglobulins, Membrane Bound,Membrane Bound Immunoglobulins,Receptor, B-Cell Antigen,Receptors, B-Cell Antigen
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs

Related Publications

M R Clark, and R J Friedrich, and K S Campbell, and J C Cambier
May 1993, The EMBO journal,
M R Clark, and R J Friedrich, and K S Campbell, and J C Cambier
January 1989, International immunology,
M R Clark, and R J Friedrich, and K S Campbell, and J C Cambier
April 1993, Journal of immunology (Baltimore, Md. : 1950),
M R Clark, and R J Friedrich, and K S Campbell, and J C Cambier
January 1992, Proceedings of the National Academy of Sciences of the United States of America,
M R Clark, and R J Friedrich, and K S Campbell, and J C Cambier
March 1993, Journal of immunology (Baltimore, Md. : 1950),
M R Clark, and R J Friedrich, and K S Campbell, and J C Cambier
August 1998, Journal of immunology (Baltimore, Md. : 1950),
M R Clark, and R J Friedrich, and K S Campbell, and J C Cambier
February 1990, The EMBO journal,
M R Clark, and R J Friedrich, and K S Campbell, and J C Cambier
March 1994, Journal of immunology (Baltimore, Md. : 1950),
M R Clark, and R J Friedrich, and K S Campbell, and J C Cambier
July 1991, Proceedings of the National Academy of Sciences of the United States of America,
M R Clark, and R J Friedrich, and K S Campbell, and J C Cambier
January 1998, Immunological investigations,
Copied contents to your clipboard!