A study of dependence of protein synthesis in mitochondria on the transmembrane potential. 1977

Y M Rabinovitz, and H A Pinus, and A V Kotelnikova

1. Incorporation of [H3]leucine into the TCA insoluble fraction of rat liver mitochondria incubated in vitro is inhibited by uncouplers of oxidative phosphorylation. The inhibition is not correlated with the activation of mitochondrial ATPase. 2. Dependence of mitochondrial protein synthesis on the transmembrane potential is manifested in a wide range of K+ and Mg++ concentrations in the incubation media. 3. The inhibitory action of uncouplers shows a lag period equal to 5-7 minutes, this lag period however is not observed when the uncoupler is added to puromycin-treated mitochondria. 4. Dependence of mitochondrial protein synthesis on the transmembrane potential, which represents a property characteristic for the inner mitochondrial membrane suggests that mitochondrial ribosomes act in close contact with the mitochondrial membrane system.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009840 Oligomycins A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X). Oligomycin
D011691 Puromycin A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis. CL-13900,P-638,Puromycin Dihydrochloride,Puromycin Hydrochloride,Stylomycin,CL 13900,CL13900,P 638,P638
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide

Related Publications

Y M Rabinovitz, and H A Pinus, and A V Kotelnikova
January 1979, Biofizika,
Y M Rabinovitz, and H A Pinus, and A V Kotelnikova
October 1997, Archives of physiology and biochemistry,
Y M Rabinovitz, and H A Pinus, and A V Kotelnikova
January 1973, Biokhimiia (Moscow, Russia),
Y M Rabinovitz, and H A Pinus, and A V Kotelnikova
February 1984, Biulleten' eksperimental'noi biologii i meditsiny,
Y M Rabinovitz, and H A Pinus, and A V Kotelnikova
November 1987, Biulleten' eksperimental'noi biologii i meditsiny,
Y M Rabinovitz, and H A Pinus, and A V Kotelnikova
December 1982, Biulleten' eksperimental'noi biologii i meditsiny,
Y M Rabinovitz, and H A Pinus, and A V Kotelnikova
November 1969, Archives of biochemistry and biophysics,
Y M Rabinovitz, and H A Pinus, and A V Kotelnikova
January 1981, Doklady Akademii nauk SSSR,
Y M Rabinovitz, and H A Pinus, and A V Kotelnikova
February 1959, Biulleten' eksperimental'noi biologii i meditsiny,
Copied contents to your clipboard!