Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging. 1992

J W Hugg, and K D Laxer, and G B Matson, and A A Maudsley, and C A Husted, and M W Weiner
MR Unit, Department of Veterans Affairs Medical Center, San Francisco, CA.

We attempted to lateralize the epileptogenic focus (seven temporal lobe hippocampal foci, one frontal lobe focus) in medically refractory unilateral complex partial seizures, using noninvasive 31P magnetic resonance spectroscopic imaging (MRSI) blindly and interictally to compare hippocampal or frontal regions. The seizure foci were more alkaline (intracellular pH = 7.17 +/- 0.03) compared with the contralateral region (7.06 +/- 0.02, p < 0.01) in all eight cases; the inorganic phosphate was relatively increased (240 +/- 50% of contralateral, seven of eight cases, p < 0.01); and phosphomonoesters were relatively reduced (68 +/- 9% of contralateral, seven of eight cases, p < 0.01). Other phosphorus metabolites were symmetric (+/- 10%). 31P MRSI correctly lateralized the seizure focus in all eight cases. By comparison, imaging correctly lateralized four cases and SPECT, two cases. In conclusion, 31P MRSI is a useful tool for the noninvasive clinical assessment of focal epilepsy and can accurately lateralize the epileptogenic focus.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D015899 Tomography, Emission-Computed, Single-Photon A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image. CAT Scan, Single-Photon Emission,CT Scan, Single-Photon Emission,Radionuclide Tomography, Single-Photon Emission-Computed,SPECT,Single-Photon Emission-Computed Tomography,Tomography, Single-Photon, Emission-Computed,Single-Photon Emission CT Scan,Single-Photon Emission Computer-Assisted Tomography,Single-Photon Emission Computerized Tomography,CAT Scan, Single Photon Emission,CT Scan, Single Photon Emission,Emission-Computed Tomography, Single-Photon,Radionuclide Tomography, Single Photon Emission Computed,Single Photon Emission CT Scan,Single Photon Emission Computed Tomography,Single Photon Emission Computer Assisted Tomography,Single Photon Emission Computerized Tomography,Tomography, Single-Photon Emission-Computed
D017029 Epilepsy, Complex Partial A disorder characterized by recurrent partial seizures marked by impairment of cognition. During the seizure the individual may experience a wide variety of psychic phenomenon including formed hallucinations, illusions, deja vu, intense emotional feelings, confusion, and spatial disorientation. Focal motor activity, sensory alterations and AUTOMATISM may also occur. Complex partial seizures often originate from foci in one or both temporal lobes. The etiology may be idiopathic (cryptogenic partial complex epilepsy) or occur as a secondary manifestation of a focal cortical lesion (symptomatic partial complex epilepsy). (From Adams et al., Principles of Neurology, 6th ed, pp317-8) Complex Partial Epilepsy,Complex Partial Seizure Disorder,Cryptogenic Partial Complex Epilepsy,Disorder, Complex Partial Seizures,Epilepsy, Cryptogenic, Partial Complex,Epilepsy, Psychic Equivalent,Epilepsy, Psychomotor,Epilepsy, Symptomatic, Partial Complex,Partial Complex Epilepsy, Cryptogenic,Partial Complex Epilepsy, Symptomatic,Seizure Disorder, Complex Partial,Symptomatic Partial Complex Epilepsy,Partial Epilepsy, Complex,Psychic Equivalent Epilepsy,Psychomotor Epilepsy

Related Publications

J W Hugg, and K D Laxer, and G B Matson, and A A Maudsley, and C A Husted, and M W Weiner
August 1998, Neurology,
J W Hugg, and K D Laxer, and G B Matson, and A A Maudsley, and C A Husted, and M W Weiner
April 2015, Quantitative imaging in medicine and surgery,
J W Hugg, and K D Laxer, and G B Matson, and A A Maudsley, and C A Husted, and M W Weiner
July 1999, Revue neurologique,
J W Hugg, and K D Laxer, and G B Matson, and A A Maudsley, and C A Husted, and M W Weiner
November 1997, Annals of neurology,
J W Hugg, and K D Laxer, and G B Matson, and A A Maudsley, and C A Husted, and M W Weiner
April 1989, Journal of neurosurgery,
J W Hugg, and K D Laxer, and G B Matson, and A A Maudsley, and C A Husted, and M W Weiner
November 1991, Journal of neuroimaging : official journal of the American Society of Neuroimaging,
J W Hugg, and K D Laxer, and G B Matson, and A A Maudsley, and C A Husted, and M W Weiner
September 1988, Cancer research,
J W Hugg, and K D Laxer, and G B Matson, and A A Maudsley, and C A Husted, and M W Weiner
September 1994, Arquivos de neuro-psiquiatria,
J W Hugg, and K D Laxer, and G B Matson, and A A Maudsley, and C A Husted, and M W Weiner
June 2019, Magnetic resonance imaging,
J W Hugg, and K D Laxer, and G B Matson, and A A Maudsley, and C A Husted, and M W Weiner
June 1985, The New England journal of medicine,
Copied contents to your clipboard!