Identification of sodium-dependent and sodium-independent dicarboxylate transport systems in rat liver basolateral membrane vesicles. 1992

B Zimmerli, and B O'Neill, and P J Meier
Department of Internal Medicine, University Hospital, Zürich, Switzerland.

The mechanisms involved in the hepatocellular uptake of Krebs-cycle intermediates were investigated in isolated basolateral (sinusoidal and lateral) rat liver plasma membrane (blLPM) vesicles. An inwardly directed Na+ gradient markedly stimulated uptake of 2-oxoglutarate and succinate into voltage- and pH-clamped blLPM vesicles. This Na(+)-dependent portion of the dicarboxylate uptake was characterized by (a) saturability with increasing substrate concentrations (Km = 6.4-10 mM; Vmax approximately 0.2 nmol min-1 mg protein-1), (b) cis-inhibition by lithium (10 mM), other Krebs-cycle dicarboxylates (1 mM) and DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid; 1 mM) but not by sulphate, monocarboxylates, oxalate, acidic amino acids, bile salts and probenecid, (c) stimulation by an intravesicular negative K(+)-diffusion potential indicating electrogenic [(Na+)n greater than 2-succinate] cotransport, and (d) a pH optimum for transport between 7.0 and 7.5. In the absence of Na+, an inside alkaline pH gradient also markedly stimulated 2-oxoglutarate uptake. This pH-gradient-driven 2-oxoglutarate uptake was insensitive to lithium, but could also be inhibited by DIDS and succinate. Furthermore, saturation kinetics demonstrated Km (approximately 34 mM) and Vmax (approximately 0.8 nmol min-1 mg protein-1) values that were clearly different from those of the Na(+)-dependent uptake system. These results indicate the occurrence of two separate dicarboxylate transport systems along the sinusoidal border of hepatocytes, one being a Na(+)-dicarboxylate symporter and the other representing an anion-exchange system.

UI MeSH Term Description Entries
D007656 Ketoglutaric Acids A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442) Oxoglutarates,2-Ketoglutarate,2-Ketoglutaric Acid,2-Oxoglutarate,2-Oxoglutaric Acid,Calcium Ketoglutarate,Calcium alpha-Ketoglutarate,Ketoglutaric Acid,Oxogluric Acid,alpha-Ketoglutarate,alpha-Ketoglutaric Acid,alpha-Ketoglutaric Acid, Calcium Salt (2:1),alpha-Ketoglutaric Acid, Diammonium Salt,alpha-Ketoglutaric Acid, Dipotassium Salt,alpha-Ketoglutaric Acid, Disodium Salt,alpha-Ketoglutaric Acid, Monopotassium Salt,alpha-Ketoglutaric Acid, Monosodium Salt,alpha-Ketoglutaric Acid, Potassium Salt,alpha-Ketoglutaric Acid, Sodium Salt,alpha-Oxoglutarate,2 Ketoglutarate,2 Ketoglutaric Acid,2 Oxoglutarate,2 Oxoglutaric Acid,Calcium alpha Ketoglutarate,alpha Ketoglutarate,alpha Ketoglutaric Acid,alpha Ketoglutaric Acid, Diammonium Salt,alpha Ketoglutaric Acid, Dipotassium Salt,alpha Ketoglutaric Acid, Disodium Salt,alpha Ketoglutaric Acid, Monopotassium Salt,alpha Ketoglutaric Acid, Monosodium Salt,alpha Ketoglutaric Acid, Potassium Salt,alpha Ketoglutaric Acid, Sodium Salt,alpha Oxoglutarate,alpha-Ketoglutarate, Calcium
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013386 Succinates Derivatives of SUCCINIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,4-carboxy terminated aliphatic structure. Succinic Acids,Acids, Succinic
D017136 Ion Transport The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions. Antiport,Ion Cotransport,Ion Exchange, Intracellular,Symport,Uniport,Active Ion Transport,Facilitated Ion Transport,Passive Ion Transport,Cotransport, Ion,Exchange, Intracellular Ion,Intracellular Ion Exchange,Ion Transport, Active,Ion Transport, Facilitated,Ion Transport, Passive,Transport, Active Ion,Transport, Ion

Related Publications

B Zimmerli, and B O'Neill, and P J Meier
July 1984, Pflugers Archiv : European journal of physiology,
B Zimmerli, and B O'Neill, and P J Meier
March 1987, Archives internationales de physiologie et de biochimie,
B Zimmerli, and B O'Neill, and P J Meier
January 1992, Canadian journal of physiology and pharmacology,
B Zimmerli, and B O'Neill, and P J Meier
July 1996, Hepatology (Baltimore, Md.),
B Zimmerli, and B O'Neill, and P J Meier
November 1990, The American journal of physiology,
B Zimmerli, and B O'Neill, and P J Meier
March 2006, Journal of cellular physiology,
B Zimmerli, and B O'Neill, and P J Meier
October 1992, Archives of biochemistry and biophysics,
B Zimmerli, and B O'Neill, and P J Meier
September 1992, Gastroenterology,
B Zimmerli, and B O'Neill, and P J Meier
September 1978, The Biochemical journal,
Copied contents to your clipboard!