Lability of monofunctional cis-platinum adducts: role of DNA double helix. 1992

M F Anin, and F Gaucheron, and M Leng
Centre de Biophysique Moléculaire, CNRS, Orléans, France.

Recently, we have shown that the adduct formed in the reaction between the platinum-triamine complex cis-[Pt(NH3)2(N7-N-methyl-2-diazapyrenium)Cl]2+ and one single-stranded oligonucleotide was stable but became labile as soon as the platinated oligonucleotide was paired with its complementary strand (Gaucheron et al. Proc. Natl. Acad. Sci. USA 88, 3516-3519 (1991)). To generalize this finding we have now studied large DNA fragments containing several adducts. The stability of the adducts within single-stranded DNA is demonstrated by absorption spectrophotometry and by replication mapping experiments. Several approaches are used to prove the lability of the adducts within double-stranded DNA. Replication mapping experiments reveal that an unmodified single-stranded DNA when mixed with double-stranded DNA modified by the platinum-triamine complex behaves as a single-stranded DNA modified by the triamine complex. After double-stranded DNA is modified by the platinum-triamine complex, intrastrand and interstrand cross-links are progressively formed during subsequent incubation as revealed by transcription mapping experiments and gel electrophoresis under denaturing conditions. Finally, replication mapping experiments show that the lability of the adducts within a double-stranded DNA depends upon the nature of the flanking nucleotide residues. All these results support the proposal that the DNA double helix acts as a catalyst in the reaction between DNA, cis-diamminedichloroplatinum(II) and N-methyl-2,7-diazapyrenium.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010618 Phenanthrolines Phenanthroline
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

M F Anin, and F Gaucheron, and M Leng
August 1988, Nucleic acids research,
M F Anin, and F Gaucheron, and M Leng
August 1986, Biochemistry,
M F Anin, and F Gaucheron, and M Leng
May 1992, Nucleic acids research,
M F Anin, and F Gaucheron, and M Leng
January 1994, Metal-based drugs,
M F Anin, and F Gaucheron, and M Leng
November 2015, Chemical research in toxicology,
M F Anin, and F Gaucheron, and M Leng
February 1994, Biochemistry,
M F Anin, and F Gaucheron, and M Leng
March 1992, Biochemistry,
M F Anin, and F Gaucheron, and M Leng
December 2012, Journal of inorganic biochemistry,
Copied contents to your clipboard!