In vitro studies of skeletal muscle membranes. Effects of denervation on the macromolecular components of cation transport in red and white skeletal muscle. 1977

B W Festoff, and K L Oliver, and N B Reddy

The effects of denervation on the macromolecular components of active monovalent cation transport in skeletal muscle have been studied using purified sarcolemma membranes. A comparison of membrane activities of fast-twitch, slow-twitch, and mixed-fiber muscles was made to determine what role, if any, the motor nerve has in regulating this important aspect of muscle metabolism. A dramatic increase in the basal sarcolemmal Mg++ ATPase activity (three- to fourfold) was found for both major muscle types. An increase in the ouabain-inhibitable (Na+ + K+)-stimulated enzyme was also found, but the effect was substantially less (1.5- to twofold). [3H]-ouabain binding, as an index of glycoside receptor sites, also increased (two- to threefold) midway in the course of denervation. On the other hand, the phosphorylated intermediate activity, a functional component of the transport system, clearly decreased over the same time course and remained below control values for the remainder of the course. This resulted in a two- to threefold increase in the turnover number, suggesting that active transport of cations should increase dramatically with denervation. The membrane protein patterns on SDS gels were less obvious than the changes observed in the functional components. The major effects appeared after only one week and seemed to be restricted to high molecular weight membrane proteins, especially in the 100,000 to 250,000 daltons range. This effect was more prominent in slow-twitch membranes with an apparent semiquantitative decrease in stain at 240,000 daltons. In gels of membranes from fast-twitch muscles a decreased stain in the range of 100,000 to 110,000 daltons occurred, and this became more obvious with longer periods of denervation. The results suggest that considerable influence on the macromolecular components of active cation transport in skeletal muscle is exerted by the motor nerve. No appreciable difference was found in this effect when the two major types of skeletal muscle, fast-twitch and slow-twitch, were compared, suggesting that motor nerve regulation of this membrane property is qualitatively the same.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies

Related Publications

B W Festoff, and K L Oliver, and N B Reddy
May 1973, Experientia,
B W Festoff, and K L Oliver, and N B Reddy
March 1996, Acta physiologica Scandinavica,
B W Festoff, and K L Oliver, and N B Reddy
April 1968, Science (New York, N.Y.),
B W Festoff, and K L Oliver, and N B Reddy
May 1969, The American journal of physiology,
B W Festoff, and K L Oliver, and N B Reddy
May 1963, The Journal of cell biology,
B W Festoff, and K L Oliver, and N B Reddy
September 1968, Life sciences,
B W Festoff, and K L Oliver, and N B Reddy
February 1966, The American journal of pathology,
B W Festoff, and K L Oliver, and N B Reddy
January 1986, Acta physiologica Scandinavica. Supplementum,
B W Festoff, and K L Oliver, and N B Reddy
May 1979, Bollettino della Societa italiana di biologia sperimentale,
B W Festoff, and K L Oliver, and N B Reddy
January 1971, Acta medica Polona,
Copied contents to your clipboard!