Synthesis and characterization of melanins from dihydroxyindole-2-carboxylic acid and dihydroxyindole. 1992

S J Orlow, and M P Osber, and J M Pawelek
Department of Dermatology, New York University Medical Center, New York 10016.

Several studies have confirmed that a melanocyte-specific enzyme, dopachrome tautomerase (EC 5.3.2.3), catalyzes the isomerization of dopachrome to 5,6-dihydroxyindole-2-carboxylic acid (DHICA) (Pawelek, 1991). Here we report that DHICA, produced either enzymatically with dopachrome tautomerase or through chemical synthesis, spontaneously polymerized to form brown melanin that was soluble in aqueous solutions above pH 5. Under the same reaction conditions, solutions of either DOPA, DOPAchrome, or 5,6-dihydroxyindole (DHI) formed black, insoluble melanin precipitates. When DHICA and DHI were mixed together, with DHICA in molar excess, little or no precipitation of DHI-melanin occurred and the rate and extent of soluble melanin formation was markedly enhanced over that achieved with DHICA alone, suggesting co-polymerization of DHICA and DHI. With or without DHI, DHICA-melanins absorbed throughout the ultraviolet and visible spectra (200-600 nm). The DHICA-melanins precipitated below pH 5, at least in part because of protonation of the carboxyl groups. DHICA-melanins could be passed through 0.22 micron filters but could not be dialyzed through semi-permeable membranes with exclusion limits of 12,000-14,000 daltons. HPLC/molecular sieve analyses revealed apparent molecular weights ranging from 20,000 to 200,000 daltons, corresponding to 100-1,000 DHICA monomers per molecule of melanin. DHICA-melanins were stable to boiling, lyophilization, freezing and thawing, and incubation at room temperature for more than 1 year. The natural occurrence of oligomers of DHICA was first reported by Ito and Nichol (1974) in their studies of the brown tapetal pigment in the eye of the sea catfish (Arius felis L.).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007535 Isomerases A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5. Isomerase
D008543 Melanins Insoluble polymers of TYROSINE derivatives found in and causing darkness in skin (SKIN PIGMENTATION), hair, and feathers providing protection against SUNBURN induced by SUNLIGHT. CAROTENES contribute yellow and red coloration. Allomelanins,Melanin,Phaeomelanins
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D019746 Intramolecular Oxidoreductases Enzymes of the isomerase class that catalyze the oxidation of one part of a molecule with a corresponding reduction of another part of the same molecule. They include enzymes converting aldoses to ketoses (ALDOSE-KETOSE ISOMERASES), enzymes shifting a carbon-carbon double bond (CARBON-CARBON DOUBLE BOND ISOMERASES), and enzymes transposing S-S bonds (SULFUR-SULFUR BOND ISOMERASES). (From Enzyme Nomenclature, 1992) EC 5.3. Oxidoreductases, Intramolecular

Related Publications

S J Orlow, and M P Osber, and J M Pawelek
January 2021, Chemistry of heterocyclic compounds,
S J Orlow, and M P Osber, and J M Pawelek
October 2006, Pigment cell research,
S J Orlow, and M P Osber, and J M Pawelek
July 2012, ACS medicinal chemistry letters,
S J Orlow, and M P Osber, and J M Pawelek
November 2011, The journal of physical chemistry. B,
S J Orlow, and M P Osber, and J M Pawelek
September 1992, The Biochemical journal,
S J Orlow, and M P Osber, and J M Pawelek
September 1985, The Journal of investigative dermatology,
Copied contents to your clipboard!