Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. 1992

A Marra, and S J Blander, and M A Horwitz, and H A Shuman
Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032.

The legionnaires' disease bacterium, Legionella pneumophila, is a facultative intracellular parasite. Its interaction with phagocytes has characteristics in common with several other intracellular parasites. Critical aspects of L. pneumophila intracellular multiplication are evasion of lysosomal host cell defenses and the presence of a nutritionally appropriate environment. Following phagocytosis, wild-type L. pneumophila multiply within a specialized phagosome which does not fuse with secondary lysosomes. Mutants which have lost the ability to grow within phagocytes no longer cause disease in animals, indicating that the capacity to multiply intracellularly is important for pathogenesis. One such mutant, 25D, has been shown to be defective in inhibiting phagosome-lysosome fusion. This phagolysosomal environment is not conducive to Legionella growth. We report the isolation of a region of the L. pneumophila genome (icm, intracellular multiplication) which restores the capacity of 25D to multiply in human macrophages. The complemented mutants also regain the capacity to interfere with phagosome-lysosome fusion and to cause lethal pneumonia in guinea pigs.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

A Marra, and S J Blander, and M A Horwitz, and H A Shuman
November 1994, Molecular microbiology,
A Marra, and S J Blander, and M A Horwitz, and H A Shuman
January 2011, Frontiers in microbiology,
A Marra, and S J Blander, and M A Horwitz, and H A Shuman
December 2022, Canadian journal of microbiology,
A Marra, and S J Blander, and M A Horwitz, and H A Shuman
June 1988, Journal of immunology (Baltimore, Md. : 1950),
A Marra, and S J Blander, and M A Horwitz, and H A Shuman
October 1988, The Journal of antimicrobial chemotherapy,
A Marra, and S J Blander, and M A Horwitz, and H A Shuman
January 1998, Current topics in microbiology and immunology,
A Marra, and S J Blander, and M A Horwitz, and H A Shuman
December 1994, Journal of UOEH,
A Marra, and S J Blander, and M A Horwitz, and H A Shuman
April 2010, Proceedings of the National Academy of Sciences of the United States of America,
A Marra, and S J Blander, and M A Horwitz, and H A Shuman
June 1980, Infection and immunity,
A Marra, and S J Blander, and M A Horwitz, and H A Shuman
December 1993, Infection and immunity,
Copied contents to your clipboard!