SPECIFIC FRACTIONATION OF HUMAN ANTIDEXTRAN ANTIBODIES. II. ASSAY OF HUMAN ANTIDEXTRAN SERA AND SPECIFICALLY FRACTIONATED PURIFIED ANTIBODIES BY MICROCOMPLEMENT FIXATION AND COMPLEMENT FIXATION INHIBITION TECHNIQUES. 1964

J GELZER, and E A KABAT

Human antidextran of one individual, absorbed specifically on sephadex, was fractionated into two populations of antibody molecules by successive elution with oligosaccharides of the isomaltose series of increasing size. The purified antibody fractions and some whole antidextran sera were found to fix complement with dextrans of molecular weight of 195,000 and above. It could be demonstrated by quantitative microcomplement fixation inhibition assays that the antibody eluted with isomaltotriose had a higher affinity for smaller oligosaccharides relative to isomaltohexaose, indicating a high content of antibody molecules with smaller combining sites, while with the second fraction, eluted with isomaltohexaose, the small haptens were very poor inhibitors and the larger oligosaccharides inhibited readily, presumably due to a higher proportion of molecules with larger combining site size. Assays of similarly prepared fractions, obtained from earlier bleedings of the same individual (1), with inhibition of complement fixation were in good agreement with those obtained by inhibition of precipitation. The two purified antidextran fractions were shown to differ with respect to their complement-fixing capacity. The fraction with molecules with smaller size-combining sites fixed only about half as much complement per unit antibody N as did the fraction containing largely molecules with larger combining sites suggesting that the strength of complement fixation is affected by the strength of the antigen-antibody interaction.

UI MeSH Term Description Entries
D008320 Maltose A dextrodisaccharide from malt and starch. It is used as a sweetening agent and fermentable intermediate in brewing. (Grant & Hackh's Chemical Dictionary, 5th ed)
D012106 Research Critical and exhaustive investigation or experimentation, having for its aim the discovery of new facts and their correct interpretation, the revision of accepted conclusions, theories, or laws in the light of newly discovered facts, or the practical application of such new or revised conclusions, theories, or laws. (Webster, 3d ed) Research Priorities,Laboratory Research,Research Activities,Research and Development,Activities, Research,Activity, Research,Development and Research,Priorities, Research,Priority, Research,Research Activity,Research Priority,Research, Laboratory
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003168 Complement Fixation Tests Serologic tests based on inactivation of complement by the antigen-antibody complex (stage 1). Binding of free complement can be visualized by addition of a second antigen-antibody system such as red cells and appropriate red cell antibody (hemolysin) requiring complement for its completion (stage 2). Failure of the red cells to lyse indicates that a specific antigen-antibody reaction has taken place in stage 1. If red cells lyse, free complement is present indicating no antigen-antibody reaction occurred in stage 1. Complement Absorption Test, Conglutinating,Conglutination Reaction,Conglutinating Complement Absorption Test,Complement Fixation Test,Conglutination Reactions,Fixation Test, Complement,Fixation Tests, Complement,Reaction, Conglutination,Reactions, Conglutination,Test, Complement Fixation,Tests, Complement Fixation
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000888 Antibodies, Anti-Idiotypic Antibodies which react with the individual structural determinants (idiotopes) on the variable region of other antibodies. Anti-Antibodies,Anti-Idiotype Antibodies,Antibodies, Internal Image,Antigamma Globulin Antibodies,Antiglobulins,Anti Antibodies,Anti-gamma Globulin Antibodies,Anti Idiotype Antibodies,Anti gamma Globulin Antibodies,Anti-Idiotypic Antibodies,Antibodies, Anti,Antibodies, Anti Idiotypic,Antibodies, Anti-Idiotype,Antibodies, Anti-gamma Globulin,Antibodies, Antigamma Globulin,Globulin Antibodies, Anti-gamma,Globulin Antibodies, Antigamma,Image Antibodies, Internal,Internal Image Antibodies
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).

Related Publications

J GELZER, and E A KABAT
January 1981, International archives of allergy and applied immunology,
J GELZER, and E A KABAT
June 1965, Annals of the New York Academy of Sciences,
J GELZER, and E A KABAT
February 1979, American journal of veterinary research,
J GELZER, and E A KABAT
June 1985, Transplantation,
J GELZER, and E A KABAT
February 1954, The Australian journal of experimental biology and medical science,
J GELZER, and E A KABAT
January 1967, Archiv fur die gesamte Virusforschung,
J GELZER, and E A KABAT
January 2013, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!