Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. 1992

E L Ferguson, and K V Anderson
Department of Molecular and Cell Biology, University of California, Berkeley 94720.

Zygotic expression of the Drosophila TGF beta family member decapentaplegic (dpp) is required for the development of the dorsal embryonic structures. By injecting dpp transcripts into young embryos, we find that 2- to 4-fold increases in the concentration of injected RNA elicit progressively more dorsal cell fates: only low levels of dpp permit development of ventral ectoderm, intermediate dpp levels drive dorsal epidermal development, and high dpp levels drive cells to differentiate as the most dorsal pattern element, the amnioserosa. Localized dpp RNA injections into embryos that lack all known maternal and zygotic dorsal-ventral polarity indicate that dpp can both define embryonic polarity and organize detailed patterning within the ectoderm. We infer that dpp acts as an extracellular morphogen and that the graded activity of dpp specifies the pattern of ectodermal cell fates in the Drosophila embryo.

UI MeSH Term Description Entries
D007301 Insect Hormones Hormones secreted by insects. They influence their growth and development. Also synthetic substances that act like insect hormones. Insect Hormone,Hormone, Insect,Hormones, Insect
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004475 Ectoderm The outer of the three germ layers of an embryo. Apical Ectodermal Ridge,Apical Ectodermal Ridges,Ectodermal Ridge, Apical,Ectoderms
D005775 Gastrula The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism. Archenteron,Blastopore,Gastrocoele,Primitive Gut,Archenterons,Blastopores,Gastrocoeles,Gastrulas,Gut, Primitive,Guts, Primitive,Primitive Guts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk
D029721 Drosophila Proteins Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development. Drosophila melanogaster Proteins,Proteins, Drosophila,Proteins, Drosophila melanogaster,melanogaster Proteins, Drosophila

Related Publications

E L Ferguson, and K V Anderson
October 1987, Genes & development,
E L Ferguson, and K V Anderson
June 1990, Seminars in cell biology,
E L Ferguson, and K V Anderson
August 1991, Current opinion in genetics & development,
E L Ferguson, and K V Anderson
August 1993, Current opinion in genetics & development,
E L Ferguson, and K V Anderson
January 1995, Annual review of genetics,
E L Ferguson, and K V Anderson
February 1994, Cell,
E L Ferguson, and K V Anderson
September 2007, Nature reviews. Genetics,
Copied contents to your clipboard!