Mechanism of formation of the thioether conjugate of the bladder carcinogen 2-amino-4-(5-nitro-2-furyl)-thiazole (ANFT). 1992

V M Lakshmi, and T V Zenser, and S Sohani, and B B Davis
VA Medical Center, St. Louis, MO.

The formation of thioether conjugates is an important pathway for inactivation of certain carcinogens. This study assessed the mechanism by which the bladder carcinogen 2-amino-4-(5-nitro-2-furyl)-thiazole (ANFT) forms a glutathione conjugate (ANFT-SG). Peroxidatic metabolism of ANFT, in the presence of glutathione, results in ANFT-SG formation. Both prostaglandin H synthase and horseradish peroxidase can catalyze this reaction. Metabolism of the reducing co-substrates ANFT, phenol, and aminopyrine elicit increases in oxidized glutathione (GSSG). ANFT-SG formation is potentiated by phenol and aminopyrine. tert-Nitrosobutane (tNB), a thiyl radical trap, prevented increases in both GSSG and ANFT-SG. Increasing concentrations of ANFT elicited corresponding increases in both GSSG and ANFT-SG. Peroxidatic metabolism of ANFT in the presence of glutathione, but not in the absence of glutathione, resulted in oxygen uptake. The formation of GSSG and oxygen uptake are consistent with the presence of thiyl radicals during ANFT metabolism. 5,5-Dimethyl-1-pyrroline N-oxide, a thiyl radical trap, was not as effective as tNB in inhibiting the formation of ANFT-SG and GSSG. Ascorbic acid, a reducing cosubstrate and antioxidant, was very effective in preventing ANFT-SG and GSSG formation, while the strong nucleophile methionine was ineffective. To clarify effects of different test agents, their effects on aminopyrine cation radical formation were assessed. Results are consistent with ANFT reacting with thiyl radicals to form ANFT-SG. ANFT appears to be a thiyl radical trap. Peroxidatic metabolism of ANFT probably results in the formation of a cation radical rather than a carbon-centered radical.

UI MeSH Term Description Entries
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D001749 Urinary Bladder Neoplasms Tumors or cancer of the URINARY BLADDER. Bladder Cancer,Bladder Neoplasms,Cancer of Bladder,Bladder Tumors,Cancer of the Bladder,Malignant Tumor of Urinary Bladder,Neoplasms, Bladder,Urinary Bladder Cancer,Bladder Cancers,Bladder Neoplasm,Bladder Tumor,Cancer, Bladder,Cancer, Urinary Bladder,Neoplasm, Bladder,Neoplasm, Urinary Bladder,Tumor, Bladder,Tumors, Bladder,Urinary Bladder Neoplasm
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D005200 FANFT A potent nitrofuran derivative tumor initiator. It causes bladder tumors in all animals studied and is mutagenic to many bacteria. N-4-(5-Nitro-2-furyl)-2-thiazolylformamide
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D013440 Sulfides Chemical groups containing the covalent sulfur bonds -S-. The sulfur atom can be bound to inorganic or organic moieties. Sulfide,Thioether,Thioethers,Sulfur Ethers,Ethers, Sulfur

Related Publications

V M Lakshmi, and T V Zenser, and S Sohani, and B B Davis
January 1982, Carcinogenesis,
V M Lakshmi, and T V Zenser, and S Sohani, and B B Davis
April 1983, Cancer research,
V M Lakshmi, and T V Zenser, and S Sohani, and B B Davis
January 1975, Biochemical pharmacology,
V M Lakshmi, and T V Zenser, and S Sohani, and B B Davis
March 1991, Carcinogenesis,
V M Lakshmi, and T V Zenser, and S Sohani, and B B Davis
March 1989, Journal of chromatography,
V M Lakshmi, and T V Zenser, and S Sohani, and B B Davis
March 1984, Mutation research,
Copied contents to your clipboard!