Platelet-derived growth factor-BB-induced suppression of smooth muscle cell differentiation. 1992

B J Holycross, and R S Blank, and M M Thompson, and M J Peach, and G K Owens
Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville 22908.

Previously, we demonstrated that treatment of postconfluent quiescent rat aortic smooth muscle cells (SMCs) with platelet-derived growth factor (PDGF)-BB dramatically reduced smooth muscle (SM) alpha-actin synthesis. In the present studies, we focused on the expression of two other SM-specific proteins, SM myosin heavy chain (SM-MHC) and SM alpha-tropomyosin (SM-alpha TM), to determine whether the actions of PDGF-BB were specific to SM alpha-actin or represented a global ability of PDGF-BB to inhibit expression of cell-specific proteins characteristic of differentiated SMCs. SM-MHC and SM-alpha TM expression were assessed by one- or two-dimensional gel electrophoretic analysis of proteins from cells labeled with [35S]methionine, as well as by Northern analysis of mRNA levels. Synthesis of both SM-specific proteins was decreased by 50-70% in PDGF-BB--treated cells as compared with cells treated with PDGF vehicle. Treatment of cells with 10% fetal bovine serum, which produced a mitogenic effect equivalent to that of PDGF-BB, decreased SM-MHC synthesis by 40% but increased SM-alpha TM synthesis. SM-MHC and SM-alpha TM mRNA expression was decreased by 80% at 24 hours in PDGF-BB--treated postconfluent SMCs, whereas treatment with 10% fetal bovine serum did not decrease the expression of SM-alpha TM mRNA but did inhibit SM-MHC mRNA expression by 36%. Consistent with the absence of detectable PDGF alpha-receptors on these cells, PDGF-AA had no effect on either mitogenesis or expression of SM-MHC or SM-alpha TM.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010982 Platelet-Derived Growth Factor Mitogenic peptide growth hormone carried in the alpha-granules of platelets. It is released when platelets adhere to traumatized tissues. Connective tissue cells near the traumatized region respond by initiating the process of replication. Platelet Derived Growth Factor,Factor, Platelet-Derived Growth,Growth Factor, Platelet-Derived
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography

Related Publications

B J Holycross, and R S Blank, and M M Thompson, and M J Peach, and G K Owens
January 2016, Molecular medicine reports,
B J Holycross, and R S Blank, and M M Thompson, and M J Peach, and G K Owens
October 2014, Nutrition research and practice,
B J Holycross, and R S Blank, and M M Thompson, and M J Peach, and G K Owens
August 2014, Journal of receptor and signal transduction research,
B J Holycross, and R S Blank, and M M Thompson, and M J Peach, and G K Owens
December 2010, The Journal of biological chemistry,
B J Holycross, and R S Blank, and M M Thompson, and M J Peach, and G K Owens
December 2013, Molecular medicine reports,
B J Holycross, and R S Blank, and M M Thompson, and M J Peach, and G K Owens
February 2013, Archives of biochemistry and biophysics,
B J Holycross, and R S Blank, and M M Thompson, and M J Peach, and G K Owens
December 2019, Journal of cellular and molecular medicine,
B J Holycross, and R S Blank, and M M Thompson, and M J Peach, and G K Owens
June 2004, American journal of physiology. Heart and circulatory physiology,
B J Holycross, and R S Blank, and M M Thompson, and M J Peach, and G K Owens
July 2004, Circulation research,
B J Holycross, and R S Blank, and M M Thompson, and M J Peach, and G K Owens
July 2016, Zhonghua yi xue za zhi,
Copied contents to your clipboard!