MANNITOL AND MANNITOL DEHYDROGENASES IN CONIDIA OF ASPERGILLUS ORYZAE. 1965

K HORIKOSHI, and S IIDA, and Y IKEDA

Horikoshi, Koki (The Institute of Physical and Chemical Research, Tokyo, Japan), Shigeji Iida, and Yonosuke Ikeda. Mannitol and mannitol dehydrogenases in conidia of Aspergillus oryzae. J. Bacteriol. 89:326-330. 1965.-A sugar alcohol was isolated from the conidia of Aspergillus oryzae and identified as d-mannitol. Two types of d-mannitol dehydrogenases, nicotinamide adenine dinucleotide phosphate-linked and nicotinamide adenine dinucleotide-linked, were found in the conidia. Substrate specificities, pH optima, Michaelis-Menton constants, and the effects of inhibitors were studied. d-Mannitol was converted to fructose by the dehydrogenases. Synthesis of d-mannitol dehydrogenases was not observed during germination; the content of d-mannitol decreased at an early stage of germination. It was assumed, therefore, that d-mannitol might be used as the source of endogenous respiration and provide energy for the germination.

UI MeSH Term Description Entries
D007461 Iodoacetates Iodinated derivatives of acetic acid. Iodoacetates are commonly used as alkylating sulfhydryl reagents and enzyme inhibitors in biochemical research. Iodoacetic Acids,Acids, Iodoacetic
D007564 Japan A country in eastern Asia, island chain between the North Pacific Ocean and the Sea of Japan, east of the Korean Peninsula. The capital is Tokyo. Bonin Islands
D008353 Mannitol A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. (L)-Mannitol,Osmitrol,Osmofundin
D008354 Mannitol Dehydrogenases Sugar alcohol dehydrogenases that have specificity for MANNITOL. Enzymes in this category are generally classified according to their preference for a specific reducing cofactor. Mannitol Dehydrogenase,Mannitol 2-Dehydrogenase,Mannitol Dehydrogenase (Cytochrome),Dehydrogenase, Mannitol,Dehydrogenases, Mannitol,Mannitol 2 Dehydrogenase
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011804 Quinolines
D012106 Research Critical and exhaustive investigation or experimentation, having for its aim the discovery of new facts and their correct interpretation, the revision of accepted conclusions, theories, or laws in the light of newly discovered facts, or the practical application of such new or revised conclusions, theories, or laws. (Webster, 3d ed) Research Priorities,Laboratory Research,Research Activities,Research and Development,Activities, Research,Activity, Research,Development and Research,Priorities, Research,Priority, Research,Research Activity,Research Priority,Research, Laboratory
D002623 Chemistry Techniques, Analytical Methodologies used for the isolation, identification, detection, and quantitation of chemical substances. Analytical Chemistry Techniques,Analytical Chemistry Methods,Analytical Chemistry Method,Analytical Chemistry Technique,Chemistry Method, Analytical,Chemistry Methods, Analytical,Chemistry Technique, Analytical,Method, Analytical Chemistry,Methods, Analytical Chemistry,Technique, Analytical Chemistry,Techniques, Analytical Chemistry

Related Publications

K HORIKOSHI, and S IIDA, and Y IKEDA
May 1966, Journal of bacteriology,
K HORIKOSHI, and S IIDA, and Y IKEDA
July 1971, Biochimica et biophysica acta,
K HORIKOSHI, and S IIDA, and Y IKEDA
September 1971, Applied microbiology,
K HORIKOSHI, and S IIDA, and Y IKEDA
November 2005, Bioscience, biotechnology, and biochemistry,
K HORIKOSHI, and S IIDA, and Y IKEDA
September 1969, Biochimica et biophysica acta,
K HORIKOSHI, and S IIDA, and Y IKEDA
March 2014, Indian journal of microbiology,
K HORIKOSHI, and S IIDA, and Y IKEDA
March 2002, Bioscience, biotechnology, and biochemistry,
K HORIKOSHI, and S IIDA, and Y IKEDA
December 1965, Journal of biochemistry,
K HORIKOSHI, and S IIDA, and Y IKEDA
January 2016, Bioscience, biotechnology, and biochemistry,
K HORIKOSHI, and S IIDA, and Y IKEDA
November 1965, Journal of biochemistry,
Copied contents to your clipboard!