Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation. 1992

V Lev-Ram, and H Miyakawa, and N Lasser-Ross, and W N Ross
Department of Physiology, New York Medical College, Valhalla 10595.

1. Purkinje cells in thin slices from the guinea pig cerebellum were injected with fura-2 and high-speed sequences of fluorescence images from the cell body and entire dendritic tree were made while simultaneously recording somatic membrane potential during evoked and spontaneous electrical activity. The changes in fluorescence were interpreted in terms of changes in [Ca2+]i. 2. Individual calcium action potentials were usually accompanied by transient increases in [Ca2+]i all over the dendritic field. During evoked or spontaneous bursts of calcium spikes, [Ca2+]i increased more rapidly and to higher concentrations in fine dendrites than in thicker dendrites. At the end of a burst [Ca2+]i declined faster in thin dendrites than in thicker ones. These variations are most easily understood as deriving from the difference in surface-to-volume ratio of the two kinds of dendrites. 3. During bursts of calcium action potentials [Ca2+]i increases sometimes occurred only in individual dendritic branches, but always including the fine dendrites of that particular branch, showing that calcium action potentials can be regenerative in restrictive parts of the dendritic field without involving the soma or dendritic shaft. 4. Plateau or subthreshold potential changes evoked in the presence of tetrodotoxin (TTX) caused small, widespread increases in [Ca2+]i. The amplitude of these changes was much less than the increase corresponding to spike bursts. The distribution of these plateau Ca signals in thick and thin dendrites was similar to Ca spike-evoked signals, suggesting that the Ca conductances underlying these two potentials are the same or are distributed similarly in the dendrites. 5. Significant increases in [Ca2+]i in the soma were recorded during bursts of sodium-dependent action potentials in normal Ringer. Although much of this increase is due to calcium entry through calcium channels, some of this increase could be due to calcium entry through sodium channels.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

V Lev-Ram, and H Miyakawa, and N Lasser-Ross, and W N Ross
October 2002, The Journal of physiology,
V Lev-Ram, and H Miyakawa, and N Lasser-Ross, and W N Ross
January 1998, Peptides,
V Lev-Ram, and H Miyakawa, and N Lasser-Ross, and W N Ross
February 1995, The American journal of physiology,
V Lev-Ram, and H Miyakawa, and N Lasser-Ross, and W N Ross
March 2011, The Journal of physiology,
V Lev-Ram, and H Miyakawa, and N Lasser-Ross, and W N Ross
April 1992, Neuroreport,
V Lev-Ram, and H Miyakawa, and N Lasser-Ross, and W N Ross
September 1999, Journal of neurobiology,
V Lev-Ram, and H Miyakawa, and N Lasser-Ross, and W N Ross
March 2003, Proceedings of the National Academy of Sciences of the United States of America,
V Lev-Ram, and H Miyakawa, and N Lasser-Ross, and W N Ross
July 1998, Journal of the autonomic nervous system,
V Lev-Ram, and H Miyakawa, and N Lasser-Ross, and W N Ross
March 2000, The Journal of general physiology,
Copied contents to your clipboard!