Aliphatic propargylamines: potent, selective, irreversible monoamine oxidase B inhibitors. 1992

P H Yu, and B A Davis, and A A Boulton
Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada.

A series of aliphatic propargylamine derivatives has been synthesized. Some of them possess highly potent, irreversible, selective, inhibitory activity toward monoamine oxidase B (MAO-B). The potency of the inhibitors is related to chain length and substitution of a hydrogen on the terminal carbon of the aliphatic chain. MAO inhibitory activity as assessed in vitro increased as the aliphatic carbon chain length increased. Substitution of a hydrogen by hydroxyl, carboxyl, or carbethoxyl groups at the aliphatic chain terminal or replacement of the methyl group on the nitrogen atom by an ethyl group considerably reduced the inhibitory activity. Stereospecific effects were observed with the R-(-)-enantiomer being 20-fold more active than the S-(+)-enantiomer. Inhibitors with relatively short carbon chain lengths (i.e. four to six carbons) were found to be more potent than those with longer chains in inhibiting brain MAO-B activity in vivo especially after oral administration. Chronic administration of low doses of the aliphatic propargylamines caused a slight cumulative inhibition of MAO-A activity in the mouse brain. These MAO-B inhibitors appear to be nontoxic, and they do not possess an amphetamine-like moiety in their structure as is the case for deprenyl. We expect that these aliphatic propargylamines may be useful in the treatment in certain neuropsychiatric disorders.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D008996 Monoamine Oxidase Inhibitors A chemically heterogeneous group of drugs that have in common the ability to block oxidative deamination of naturally occurring monoamines. (From Gilman, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p414) MAO Inhibitor,MAO Inhibitors,Reversible Inhibitors of Monoamine Oxidase,Monoamine Oxidase Inhibitor,RIMA (Reversible Inhibitor of Monoamine Oxidase A),Reversible Inhibitor of Monoamine Oxidase,Inhibitor, MAO,Inhibitor, Monoamine Oxidase,Inhibitors, MAO,Inhibitors, Monoamine Oxidase
D010293 Pargyline A monoamine oxidase inhibitor with antihypertensive properties. Pargyline Hydrochloride,Hydrochloride, Pargyline
D011437 Propylamines Derivatives of propylamine (the structural formula NH2CH2CH2CH3).
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

P H Yu, and B A Davis, and A A Boulton
April 2009, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke,
P H Yu, and B A Davis, and A A Boulton
December 2012, Bioorganic & medicinal chemistry letters,
P H Yu, and B A Davis, and A A Boulton
November 2019, Bioorganic chemistry,
P H Yu, and B A Davis, and A A Boulton
February 2010, Bioorganic & medicinal chemistry,
P H Yu, and B A Davis, and A A Boulton
July 2016, European journal of medicinal chemistry,
P H Yu, and B A Davis, and A A Boulton
May 2016, European journal of medicinal chemistry,
P H Yu, and B A Davis, and A A Boulton
November 1995, Journal of medicinal chemistry,
P H Yu, and B A Davis, and A A Boulton
March 2003, Journal of medicinal chemistry,
P H Yu, and B A Davis, and A A Boulton
January 1992, Psychopharmacology bulletin,
P H Yu, and B A Davis, and A A Boulton
January 2013, European journal of medicinal chemistry,
Copied contents to your clipboard!