An NMR phased array for human cardiac 31P spectroscopy. 1992

C J Hardy, and P A Bottomley, and K W Rohling, and P B Roemer
GE Corporate Research and Development Center, Schenectady, New York 12301.

A four-coil phased-array 31P NMR receiver was designed and tested for human cardiac applications, to determine whether the combination of relatively high signal-to-noise ratio (SNR) and large field of view produced in 1H imaging is also realized for in vivo 31P spectroscopy. Spectra were acquired in parallel from an array of four overlapping 6.5-cm surface coils using one- and two-dimensional phase-encoding pulse sequences and were optimally combined to yield composite spectroscopic images. The phased array was found to generate useful 31P spectra from a 2.5-fold wider lateral region around the anterior myocardium than a single receiver of the same size as the array elements, with no increase in imaging time. In addition, the sensitive depth was increased by up to 2 cm over that of a single coil. Spectra could be acquired in roughly 15 min from a region extending to the middle of the heart, with voxel sizes of 2 x 2 x 4 cm3. For the average heart voxel, the SNR of the combined spectrum was higher than that of the best spectrum from any one coil in the array by 30%, with some voxels showing an increase as high as 60%.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006331 Heart Diseases Pathological conditions involving the HEART including its structural and functional abnormalities. Cardiac Disorders,Heart Disorders,Cardiac Diseases,Cardiac Disease,Cardiac Disorder,Heart Disease,Heart Disorder
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

C J Hardy, and P A Bottomley, and K W Rohling, and P B Roemer
August 1996, NMR in biomedicine,
C J Hardy, and P A Bottomley, and K W Rohling, and P B Roemer
June 2007, Journal of magnetic resonance (San Diego, Calif. : 1997),
C J Hardy, and P A Bottomley, and K W Rohling, and P B Roemer
November 1990, Magnetic resonance in medicine,
C J Hardy, and P A Bottomley, and K W Rohling, and P B Roemer
July 1995, Magnetic resonance in medicine,
C J Hardy, and P A Bottomley, and K W Rohling, and P B Roemer
July 2008, Magnetic resonance imaging,
C J Hardy, and P A Bottomley, and K W Rohling, and P B Roemer
April 1999, Magnetic resonance in medicine,
C J Hardy, and P A Bottomley, and K W Rohling, and P B Roemer
April 1989, NMR in biomedicine,
C J Hardy, and P A Bottomley, and K W Rohling, and P B Roemer
April 1996, The Journal of surgical research,
C J Hardy, and P A Bottomley, and K W Rohling, and P B Roemer
July 1989, Magnetic resonance in medicine,
C J Hardy, and P A Bottomley, and K W Rohling, and P B Roemer
January 1983, Acta radiologica. Supplementum,
Copied contents to your clipboard!