Nicotine-induced depolarization of cerebral cortical synaptosomes is dependent upon sodium. 1992

C J Hillard
Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee 53226.

Earlier studies from this laboratory demonstrated that activation of nicotinic cholinergic receptors of cerebral cortical synaptosomes of the rat produced a decrease in the accumulation of [3H]tetraphenylphosphonium ([3H]TPP+) as a result of a decreased synaptosomal membrane potential. In the present study, the role of sodium in the effect of nicotine on the accumulation of [3H]TPP+ and the estimated potential difference was explored. Replacement of buffer sodium with either sucrose or N-methyl-D-glucamine (NMDG), attenuated the depolarization produced by the sodium channel activator, veratridine and had no effect on potassium-induced depolarization. The effect of nicotine on accumulation of [3H]TPP+ into cerebral cortical synaptosomes was abolished in sucrose buffer and attenuated in NMDG buffer. 1,1-Dimethyl-4-phenylpiperazinium iodide (DMP; 30 microM) produced a small increase in the influx of 22Na+ into cerebral cortical synaptosomes. The effect of DMPP on the influx of 22 Na+ was not blocked by tetrodotoxin. These results support the hypothesis that the nicotinic cholinergic receptor in the brain, functions as a sodium ionophore and further demonstrate that accumulation of synaptosomal [3H]TPP+ provides a simple tool with which to assess the effect of nicotine on sodium permeability through open nicotinic cholinergic receptor ionophores.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009467 Neuromuscular Depolarizing Agents Drugs that interrupt transmission at the skeletal neuromuscular junction by causing sustained depolarization of the motor end plate. These agents are primarily used as adjuvants in surgical anesthesia to cause skeletal muscle relaxation. Depolarizing Muscle Relaxants,Muscle Relaxants, Depolarizing,Depolarizing Blockers,Agents, Neuromuscular Depolarizing,Blockers, Depolarizing,Depolarizing Agents, Neuromuscular,Relaxants, Depolarizing Muscle
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D009861 Onium Compounds Ions with the suffix -onium, indicating cations with coordination number 4 of the type RxA+ which are analogous to QUATERNARY AMMONIUM COMPOUNDS (H4N+). Ions include phosphonium R4P+, oxonium R3O+, sulfonium R3S+, chloronium R2Cl+ Compounds, Onium
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004246 Dimethylphenylpiperazinium Iodide A selective nicotinic cholinergic agonist used as a research tool. DMPP activates nicotinic receptors in autonomic ganglia but has little effect at the neuromuscular junction. DMPP,1,1-Dimethyl-4-phenylpiperazine Iodide,Dimethylphenylpiperazinium,1,1 Dimethyl 4 phenylpiperazine Iodide,Iodide, 1,1-Dimethyl-4-phenylpiperazine,Iodide, Dimethylphenylpiperazinium

Related Publications

C J Hillard
August 1990, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
C J Hillard
September 1992, Journal of neurochemistry,
C J Hillard
November 1983, European journal of pharmacology,
Copied contents to your clipboard!