Differential cerebrovascular and metabolic responses in specific neural systems elicited from the centromedian-parafascicular complex. 1992

S Mraovitch, and Y Calando, and E Pinard, and W J Pearce, and J Seylaz
Laboratoire de Recherche Cérébrovasculaire, C.N.R.S. U.A. 641, Université Paris VII, France.

The effect of electrical stimulation of the centromedian-parafascicular complex on local cerebral blood flow and local cerebral glucose utilization was investigated in anesthetized, paralysed and ventilated rats. Local cerebral blood flow and local cerebral glucose utilization were measured in separate groups of animals using the autoradiographic (14C)iodoantipyrine and (14C)2-deoxyglucose methods, respectively. Because of the well-established centromedian-parafascicular complex neuroanatomical connections, three functional neuronal systems were analysed and compared: the extrapyramidal motor system the limbic system and the reticular formation, also known as the ascending activating system. Cortical regions not included in the limbic system were considered separately. The validity of comparisons between changes in local cerebral blood flow and local cerebral glucose utilization across the brain was verified by assessing the reactivity and stability of the cortical blood flow during long-term centromedian-parafascicular complex stimulation. Centromedian-parafascicular complex stimulation elicited a marked but heterogeneous increase in local cerebral blood flow in 50 of the 52 cerebral structures measured. The most pronounced increases were seen in the lateral habenular nucleus (331 +/- 30% of control), the zona incerta (400 +/- 55%), the mesencephalic reticular formation (415 +/- 122%) and the parietal cortex (211 +/- 35%). In contrast, local cerebral glucose utilization remained statistically unchanged (P greater than 0.05) in 28 of these 50 individual brain regions during centromedian-parafascicular complex stimulation. The most pronounced increases in local cerebral glucose utilization were seen in the zona incerta (123 +/- 28%) and the mesencephalic reticular formation (193 +/- 26%). Local cerebral blood flow and local cerebral glucose utilization were linearly related in unstimulated controls, considering either all brain regions taken as a whole or the three systems separately. The significant increase in the slopes of the regression line between local cerebral blood flow and local cerebral glucose utilization for the reticular formation and the limbic system during centromedian-parafascicular complex stimulation indicates, however, that the coupling mechanisms for these systems, but not for the extrapyramidal motor system, were reset. The local cerebral blood flow to local cerebral glucose utilization ratio was heterogeneous in controls and differentially increased during centromedian-parafascicular complex stimulation, being markedly pronounced in the parietal cortex and in the reticular formation. We conclude that these results, for the first time, provide evidence that, the functionally well-defined neural networks may have different mechanisms whereby changes in vascular and metabolic demands are regulated.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001784 Blood Gas Analysis Measurement of oxygen and carbon dioxide in the blood. Analysis, Blood Gas,Analyses, Blood Gas,Blood Gas Analyses,Gas Analyses, Blood,Gas Analysis, Blood
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000758 Anesthesia A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass

Related Publications

S Mraovitch, and Y Calando, and E Pinard, and W J Pearce, and J Seylaz
June 1993, The American journal of physiology,
S Mraovitch, and Y Calando, and E Pinard, and W J Pearce, and J Seylaz
December 1987, Neuroscience letters,
S Mraovitch, and Y Calando, and E Pinard, and W J Pearce, and J Seylaz
July 1971, Brain research,
S Mraovitch, and Y Calando, and E Pinard, and W J Pearce, and J Seylaz
February 2009, Brain research bulletin,
S Mraovitch, and Y Calando, and E Pinard, and W J Pearce, and J Seylaz
June 2001, Neurology,
S Mraovitch, and Y Calando, and E Pinard, and W J Pearce, and J Seylaz
January 1996, Acta neuropathologica,
S Mraovitch, and Y Calando, and E Pinard, and W J Pearce, and J Seylaz
February 2016, Mayo Clinic proceedings,
S Mraovitch, and Y Calando, and E Pinard, and W J Pearce, and J Seylaz
May 2017, NeuroImage,
S Mraovitch, and Y Calando, and E Pinard, and W J Pearce, and J Seylaz
July 1976, The Journal of comparative neurology,
Copied contents to your clipboard!