[Activity of glutathione-dependent enzymes and superoxide dismutase in peptic ulcer]. 1992

M Iu Kolomoets

Activity of Cu, Zn-superoxide dismutase, glutathione-S-peroxidase, glutathione-S-transferase, glutathione reductase, glucoso-6-phosphate dehydrogenase and content of glutathione reduced in blood of patients with gastric and duodenal ulcer depending on the age and parallel lesion of the hepatobiliary system have been studied. Considerable inhibition of superoxide dismutase, glucoso-6-phosphate-dehydrogenase activity and decrease of the content of reduced glutathione, the most pronounced in patients with parallel lesion of the hepatobiliary system, have been revealed. Glutathione reductase activity is high in all the patients, except for aged and old people with parallel lesions of the liver and biliferous tracts. Glutathione peroxidase is essentially active in adult patients, especially in case of combined pathology. Glutathione peroxidase activity is lower in aged and old patients as compared to the age norm, while the level of glutathione-S-transferase activity is high; at the same time there are no considerable changes in the glutathione-S-transferase activity in adult patients. The mechanisms of compensation and decompensation of functioning of enzymatic antiradical and antioxidant system under the peptic ulcer depending on the age of patients and concomitant lesions of the hepatobiliary system are discussed.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010437 Peptic Ulcer Ulcer that occurs in the regions of the GASTROINTESTINAL TRACT which come into contact with GASTRIC JUICE containing PEPSIN and GASTRIC ACID. It occurs when there are defects in the MUCOSA barrier. The common forms of peptic ulcers are associated with HELICOBACTER PYLORI and the consumption of nonsteroidal anti-inflammatory drugs (NSAIDS). Gastroduodenal Ulcer,Marginal Ulcer,Gastroduodenal Ulcers,Marginal Ulcers,Peptic Ulcers,Ulcer, Gastroduodenal,Ulcer, Marginal,Ulcer, Peptic,Ulcers, Gastroduodenal,Ulcers, Marginal,Ulcers, Peptic
D005260 Female Females
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

M Iu Kolomoets
January 1992, Journal of clinical gastroenterology,
M Iu Kolomoets
December 1996, European journal of gastroenterology & hepatology,
Copied contents to your clipboard!