An effect of cardiac glycosides on oxidative phosphorylation by heart mitochondria. 1960

K S LEE, and A SCHWARTZ, and R BURSTEIN

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D002301 Cardiac Glycosides Cyclopentanophenanthrenes with a 5- or 6-membered lactone ring attached at the 17-position and SUGARS attached at the 3-position. Plants they come from have long been used in congestive heart failure. They increase the force of cardiac contraction without significantly affecting other parameters, but are very toxic at larger doses. Their mechanism of action usually involves inhibition of the NA(+)-K(+)-EXCHANGING ATPASE and they are often used in cell biological studies for that purpose. Cardiac Glycoside,Cardiotonic Steroid,Cardiotonic Steroids,Glycoside, Cardiac,Glycosides, Cardiac,Steroid, Cardiotonic,Steroids, Cardiotonic
D006027 Glycosides Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed) Glycoside
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

K S LEE, and A SCHWARTZ, and R BURSTEIN
July 1954, Biochimica et biophysica acta,
K S LEE, and A SCHWARTZ, and R BURSTEIN
November 1953, The Journal of biological chemistry,
K S LEE, and A SCHWARTZ, and R BURSTEIN
March 1966, Comparative biochemistry and physiology,
K S LEE, and A SCHWARTZ, and R BURSTEIN
May 1959, The Journal of biological chemistry,
K S LEE, and A SCHWARTZ, and R BURSTEIN
January 1976, Ukrains'kyi biokhimichnyi zhurnal,
K S LEE, and A SCHWARTZ, and R BURSTEIN
February 1975, Chemico-biological interactions,
K S LEE, and A SCHWARTZ, and R BURSTEIN
October 2008, Cardiovascular research,
K S LEE, and A SCHWARTZ, and R BURSTEIN
January 1964, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
K S LEE, and A SCHWARTZ, and R BURSTEIN
February 1960, The American journal of physiology,
Copied contents to your clipboard!