Isolation of a Drosophila gene encoding glutathione S-transferase. 1992

C Beall, and C Fyrberg, and S Song, and E Fyrberg
Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218.

We have isolated a Drosophila gene, DmGST-2, that encodes glutathione S-transferase, a homo- or heterodimeric enzyme thought to be involved in detoxification of xenobiotics, including known carcinogens. The encoded protein has a primary sequence that is more similar to mammalian placental and nematode GSTs than that of a previously described Drosophila GST gene, herein referred to as DmGST-1. We provide a physical map of the gene and show that it specifies at least two mRNAs, measuring 1.9 and 1.6 kb, which differ only in the lengths of their 3' untranslated regions. Both of the mRNAs are present during all developmental stages. In situ hybridization of the DmGST-2 gene to larval polytene chromosomes places it within the 53F subdivision of chromosome 2, and Southern blotting to chromosomal DNA indicates that the gene has no close relatives within the Drosophila genome. Our results make possible molecular genetic approaches for further elaborating the function of glutathione S-transferases in insect development and physiology, in the metabolism of plant toxins, and in conferring insecticide resistance.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Beall, and C Fyrberg, and S Song, and E Fyrberg
January 1992, Proceedings of the National Academy of Sciences of the United States of America,
C Beall, and C Fyrberg, and S Song, and E Fyrberg
October 1999, Biochimica et biophysica acta,
C Beall, and C Fyrberg, and S Song, and E Fyrberg
December 1994, Biochemical and biophysical research communications,
C Beall, and C Fyrberg, and S Song, and E Fyrberg
October 1992, The Journal of antibiotics,
C Beall, and C Fyrberg, and S Song, and E Fyrberg
February 1992, Archives of biochemistry and biophysics,
C Beall, and C Fyrberg, and S Song, and E Fyrberg
December 2004, Asian Pacific journal of allergy and immunology,
C Beall, and C Fyrberg, and S Song, and E Fyrberg
February 1990, Archives of biochemistry and biophysics,
C Beall, and C Fyrberg, and S Song, and E Fyrberg
November 1992, Archives of biochemistry and biophysics,
C Beall, and C Fyrberg, and S Song, and E Fyrberg
January 1990, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!