Renal growth hormone receptor gene expression: relationship to renal insulin-like growth factor system. 1992

E Chin, and J Zhou, and C A Bondy
Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.

In order to elucidate potential sites of direct GH action on the kidney, we used in situ hybridization to localize GH receptor (GHR) gene expression during the course of development and in the adult rat. In order to illuminate potential interactions between GH and insulin-like growth factor-I (IGF-I) in regulating renal function, we compared the anatomical localization of GHR messenger RNA (mRNA) with that for the IGF-I receptor and for IGF-I in the rat kidney. Low levels of GHR mRNA were present in the kidney from before birth and increased in abundance until postnatal day 40. Hypophysectomy resulted in a decrease and GH treatment resulted in an increase in renal GHR mRNA levels. Renal GHR mRNA was most abundant in the proximal straight tubule, with lesser levels present in the medullary thick ascending limb (MTAL), and it was not detected in the glomerulus or inner medulla. In contrast, IGF-I receptor mRNA was concentrated in the glomerulus, distal nephron and collecting system. The only point of convergence for GHR and IGF-I receptor mRNAs was in the MTAL, where IGF-I mRNA was localized. This segregation of GHR and IGF-I receptor gene expression in the kidney suggests that each hormone has distinct spheres of action along the nephron, with GH acting directly on the proximal straight tubule, whereas IGF-I may act on the glomerulus, distal nephron, and collecting duct. GHR expression in the MTAL, which is the site of renal IGF-I synthesis, supports the view that GH has a direct effect on renal IGF-I synthesis. Finally, it appears that in the kidney, as in other GH-sensitive tissues, GH may regulate its receptor levels.

UI MeSH Term Description Entries
D007016 Hypophysectomy Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed) Hypophysectomies
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D008297 Male Males
D011986 Receptors, Somatotropin Cell surface proteins that bind GROWTH HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells. Activation of growth hormone receptors regulates amino acid transport through cell membranes, RNA translation to protein, DNA transcription, and protein and amino acid catabolism in many cell types. Many of these effects are mediated indirectly through stimulation of the release of somatomedins. Growth Hormone Receptors,Receptors, Growth Hormone,Somatomammotropin Receptors,Somatotropin Receptors,Growth Hormone Receptor,Receptor, Growth Hormone,Receptors, Somatomammotropin,Somatomammotropin Receptor,Somatotropin Receptor,Hormone Receptor, Growth,Hormone Receptors, Growth
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

E Chin, and J Zhou, and C A Bondy
March 1996, Hypertension (Dallas, Tex. : 1979),
E Chin, and J Zhou, and C A Bondy
June 1999, Molecular and cellular endocrinology,
E Chin, and J Zhou, and C A Bondy
June 1995, Kidney international,
E Chin, and J Zhou, and C A Bondy
December 1986, Proceedings of the National Academy of Sciences of the United States of America,
E Chin, and J Zhou, and C A Bondy
March 2005, Pediatric nephrology (Berlin, Germany),
E Chin, and J Zhou, and C A Bondy
January 2016, Endokrynologia Polska,
E Chin, and J Zhou, and C A Bondy
April 1989, Proceedings of the National Academy of Sciences of the United States of America,
E Chin, and J Zhou, and C A Bondy
June 1994, Current opinion in obstetrics & gynecology,
E Chin, and J Zhou, and C A Bondy
June 1991, American journal of kidney diseases : the official journal of the National Kidney Foundation,
E Chin, and J Zhou, and C A Bondy
September 1992, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!