Alternative topogenic signals in peroxisomal citrate synthase of Saccharomyces cerevisiae. 1992

K K Singh, and G M Small, and A S Lewin
Department of Immunology and Medical Microbiology, College of Medicine, University of Florida, Gainesville 32601.

The tripeptide serine-lysine-leucine (SKL) occurs at the carboxyl terminus of many peroxisomal proteins and serves as a peroxisomal targeting signal. Saccharomyces cerevisiae has two isozymes of citrate synthase. The peroxisomal form, encoded by CIT2, terminates in SKL, while the mitochondrial form, encoded by CIT1, begins with an amino-terminal mitochondrial signal sequence and ends in SKN. We analyzed the importance of SKL as a topogenic signal for citrate synthase, using oleate to induce peroxisomes and density gradients to fractionate organelles. Our experiments revealed that SKL was necessary for directing citrate synthase to peroxisomes. C-terminal SKL was also sufficient to target a leaderless version of mitochondrial citrate synthase to peroxisomes. Deleting this tripeptide from the CIT2 protein caused peroxisomal citrate synthase to be missorted to mitochondria. These experiments suggest that the CIT2 protein contains a cryptic mitochondrial targeting signal.

UI MeSH Term Description Entries
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002950 Citrate (si)-Synthase Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. Citrate Synthase,Synthase, Citrate
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

K K Singh, and G M Small, and A S Lewin
April 1990, Molecular and cellular biology,
K K Singh, and G M Small, and A S Lewin
January 1975, Antonie van Leeuwenhoek,
K K Singh, and G M Small, and A S Lewin
June 1986, Molecular and cellular biology,
K K Singh, and G M Small, and A S Lewin
February 1993, The Journal of cell biology,
K K Singh, and G M Small, and A S Lewin
January 1992, Progress in clinical and biological research,
K K Singh, and G M Small, and A S Lewin
January 1991, Molecular and cellular biology,
K K Singh, and G M Small, and A S Lewin
April 1991, Archives of biochemistry and biophysics,
Copied contents to your clipboard!