Effect of melatonin on the in vitro secretion of progesterone and estradiol 17 beta by ovine granulosa cells. 1992

M Baratta, and C Tamanini
Istituto di Fisiologia Veterinaria, Università di Parma, Italy.

This study was undertaken to determine the effect of melatonin on steroid hormone production by ovine granulosa and luteal cells in vitro. Granulosa and luteal cells from ovine ovaries were cultured for nine days either in D-MEM only or in the presence of melatonin (0.86, 8.6, 86 nmol/l), ovine luteinizing hormone (oLH, 2 micrograms/l) or a combination of both these hormones. Progesterone (P4) and estradiol 17 beta (E2) were determined by validated RIAs. Melatonin stimulation began at either day 1 or day 5 of culture. Melatonin (0.86 nmol/l) significantly increased (p < 0.001) progesterone secretion by granulosa cells both when administered alone and when administered in combination with oLH; the more marked response was observed in the latter case. When the stimulation began at day 5, at a more advanced degree of differentiation of the cells, higher levels of P4 were observed. Higher concentrations of melatonin did not further increase progesterone production. Melatonin alone did not have a significant effect on the production of estradiol 17 beta; neither did melatonin stimulate progesterone production in either long-term cultured luteal cells or in short-term (1-2 h) cultured luteal and granulosa cells. The results of this study document a direct effect of melatonin in stimulating granulosa cells to produce progesterone, a synergistic activity between melatonin and luteinizing hormone and a different ability of granulosa cells to secrete P4 depending on the degree of differentiation.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008550 Melatonin A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003338 Corpus Luteum The yellow body derived from the ruptured OVARIAN FOLLICLE after OVULATION. The process of corpus luteum formation, LUTEINIZATION, is regulated by LUTEINIZING HORMONE. Corpora Lutea,Lutea, Corpora
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli

Related Publications

M Baratta, and C Tamanini
March 1988, Nihon Sanka Fujinka Gakkai zasshi,
M Baratta, and C Tamanini
August 2022, Animals : an open access journal from MDPI,
M Baratta, and C Tamanini
June 1993, Biology of reproduction,
M Baratta, and C Tamanini
October 2021, Systems biology in reproductive medicine,
M Baratta, and C Tamanini
January 1979, Advances in experimental medicine and biology,
M Baratta, and C Tamanini
November 1990, European journal of obstetrics, gynecology, and reproductive biology,
M Baratta, and C Tamanini
November 1986, Journal of reproduction and fertility,
Copied contents to your clipboard!