Hippocampal neurons and glia in epileptic EL mice. 2002

Michael G Drage, and Gregory L Holmes, and Thomas N Seyfried
Biology Department, Boston College, Chestnut Hill, MA 02467, USA.

Reactive changes in hippocampal astrocytes are frequently encountered in association with temporal lobe epilepsy in humans and with drug or kindling-induced seizures in animal models. These reactive changes generally involve increases in astrocyte size and number and often occur together with neuronal loss and synaptic rearrangements. In addition to producing astrocytic changes, seizure activity can also produce reactive changes in microglia, the resident macrophages of brain. In this study, we examined the effects of recurrent seizure activity on hippocampal neurons and glia in the epileptic EL mouse, a natural model of human multifactorial idiopathic epilepsy and complex partial seizures. Timm staining was used to evaluate infrapyramidal mossy fiber organization and the optical dissector method was used to count Nissl-stained neurons in hippocampus of adult (about one year of age) EL mice and nonepileptic C57BL/6J (B6) and DDY mice. Immunostaining for glial fibrillary acidic protein (GFAP) and Iba1, an actin cross-linking molecule restricted to macrophages and microglia, was used to evaluate astrocytes and microglia, respectively. The EL mice experienced about 25-30 complex partial seizures with secondary generalization during routine weekly cage changing. No significant differences were found among the mouse strains for Timm staining scores or for neuronal counts in the CA1 and CA3 pyramidal fields or in the hilus. However, the number of GFAP-positive astrocytes was significantly elevated in the stratum radiatum and hilus of EL mice, while microglia appeared hyper-ramified and were more intensely stained in EL mice than in the B6 or DDY mice in the hilus, parietal cortex, and pyriform cortex. The results indicate that recurrent seizure activity in EL mice is associated with abnormalities in hippocampal astrocytes and brain microglia, but is not associated with obvious neuronal loss or mossy fiber synaptic rearrangements. The EL mouse can be a useful model for evaluating neuron-glia interactions related to idiopathic epilepsy.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008818 Mice, Neurologic Mutants Mice which carry mutant genes for neurologic defects or abnormalities. Lurcher Mice,Nervous Mice,Reeler Mice,Staggerer Mice,Weaver Mice,Chakragati Mice,Chakragati Mouse,Lurcher Mouse,Mice, Neurological Mutants,Mouse, Neurologic Mutant,Mouse, Neurological Mutant,Nervous Mouse,Neurologic Mutant Mice,Neurological Mutant Mouse,Reeler Mouse,Staggerer Mouse,Weaver Mouse,ckr Mutant Mice,Mice, Chakragati,Mice, Lurcher,Mice, Nervous,Mice, Neurologic Mutant,Mice, Reeler,Mice, Staggerer,Mice, Weaver,Mice, ckr Mutant,Mouse, Chakragati,Mouse, Lurcher,Mouse, Nervous,Mouse, Reeler,Mouse, Staggerer,Mouse, Weaver,Mutant Mice, Neurologic,Mutant Mice, ckr,Mutant Mouse, Neurologic,Neurologic Mutant Mouse
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

Michael G Drage, and Gregory L Holmes, and Thomas N Seyfried
March 1991, Journal of neurochemistry,
Michael G Drage, and Gregory L Holmes, and Thomas N Seyfried
December 2004, Brain research. Molecular brain research,
Michael G Drage, and Gregory L Holmes, and Thomas N Seyfried
June 2007, Psychoneuroendocrinology,
Michael G Drage, and Gregory L Holmes, and Thomas N Seyfried
January 1998, Brain research,
Michael G Drage, and Gregory L Holmes, and Thomas N Seyfried
March 1988, Experimental neurology,
Michael G Drage, and Gregory L Holmes, and Thomas N Seyfried
October 1997, Neurochemistry international,
Michael G Drage, and Gregory L Holmes, and Thomas N Seyfried
December 1988, Brain research,
Michael G Drage, and Gregory L Holmes, and Thomas N Seyfried
July 1990, Neuroendocrinology,
Michael G Drage, and Gregory L Holmes, and Thomas N Seyfried
January 2013, Frontiers in cellular neuroscience,
Michael G Drage, and Gregory L Holmes, and Thomas N Seyfried
October 2006, Genes, brain, and behavior,
Copied contents to your clipboard!