Pharmacological profile of the 5-HT-induced inhibition of cardioaccelerator sympathetic outflow in pithed rats: correlation with 5-HT1 and putative 5-ht5A/5B receptors. 2003

Araceli Sánchez-Lopez, and David Centurión, and Erika Vázquez, and Udayasankar Arulmani, and Pramod R Saxena, and Carlos M Villalón
Departamento de Farmacobiología, CINVESTAV-IPN, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330, México DF, México.

Continuous infusions of 5-hydroxytryptamine (5-HT) inhibit the tachycardiac responses to preganglionic (C7-T1) sympathetic stimulation in pithed rats pretreated with desipramine. The present study identified the pharmacological profile of this inhibitory action of 5-HT. The inhibition induced by intravenous (i.v.) continuous infusions of 5-HT (5.6 microg x kg-1x min-1) on sympathetically induced tachycardiac responses remained unaltered after i.v. treatment with saline or the antagonists GR 127935 (5-HT1B/1D), the combination of WAY 100635 (5-HT1A) plus GR 127935, ritanserin (5-HT2), tropisetron (5-HT3/4), LY215840 (5-HT7) or a cocktail of antagonists/inhibitors consisting of yohimbine (alpha2), prazosin (alpha1), ritanserin, GR 127935, WAY 100635 and indomethacin (cyclooxygenase), but was abolished by methiothepin (5-HT1/2/6/7 and recombinant 5-ht5A/5B). These drugs, used in doses high enough to block their respective receptors/mechanisms, did not modify the sympathetically induced tachycardiac responses per se. I.v. continuous infusions of the agonists 5-carboxamidotryptamine (5-CT; 5-HT1/7 and recombinant 5-ht5A/5B), CP 93129 (r5-HT1B), sumatriptan (5-HT1B/1D), PNU-142633 (5-HT1D) and ergotamine (5-HT1B/1D and recombinant 5-ht5A/5B) mimicked the above sympatho-inhibition to 5-HT. In contrast, the agonists indorenate (5-HT1A) and LY344864 (5-ht1F) were inactive. Interestingly, 5-CT-induced cardiac sympatho-inhibition was abolished by methiothepin, the cocktail of antagonists/inhibitors, GR 127935 or the combination of SB224289 (5-HT1B) plus BRL15572 (5-HT1D), but remained unchanged when SB224289 or BRL15572 were given separately. Therefore, 5-HT-induced cardiac sympatho-inhibition, being unrelated to 5-HT2, 5-HT3, 5-HT4, 5-ht6, 5-HT7 receptors, alpha1/2-adrenoceptor or prostaglandin synthesis, seems to be primarily mediated by (i). 5-HT1 (probably 5-HT1B/1D) receptors and (ii). a novel mechanism antagonized by methiothepin that, most likely, involves putative 5-ht5A/5B receptors.

UI MeSH Term Description Entries
D007262 Infusions, Intravenous The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it. Drip Infusions,Intravenous Drip,Intravenous Infusions,Drip Infusion,Drip, Intravenous,Infusion, Drip,Infusion, Intravenous,Infusions, Drip,Intravenous Infusion
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008297 Male Males
D010069 Oxadiazoles Compounds containing five-membered heteroaromatic rings containing two carbons, two nitrogens, and one oxygen atom which exist in various regioisomeric forms. Oxadiazole
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D003891 Desipramine A tricyclic dibenzazepine compound that potentiates neurotransmission. Desipramine selectively blocks reuptake of norepinephrine from the neural synapse, and also appears to impair serotonin transport. This compound also possesses minor anticholinergic activity, through its affinity to muscarinic receptors. Desmethylimipramine,Apo-Desipramine,Demethylimipramine,Desipramine Hydrochloride,Norpramin,Novo-Desipramine,Nu-Desipramine,PMS-Desipramine,Pertofran,Pertofrane,Pertrofran,Petylyl,Ratio-Desipramine,Apo Desipramine,Hydrochloride, Desipramine,Novo Desipramine,Nu Desipramine,PMS Desipramine,Ratio Desipramine

Related Publications

Araceli Sánchez-Lopez, and David Centurión, and Erika Vázquez, and Udayasankar Arulmani, and Pramod R Saxena, and Carlos M Villalón
December 2011, Basic & clinical pharmacology & toxicology,
Araceli Sánchez-Lopez, and David Centurión, and Erika Vázquez, and Udayasankar Arulmani, and Pramod R Saxena, and Carlos M Villalón
May 2008, British journal of pharmacology,
Araceli Sánchez-Lopez, and David Centurión, and Erika Vázquez, and Udayasankar Arulmani, and Pramod R Saxena, and Carlos M Villalón
March 2020, Purinergic signalling,
Araceli Sánchez-Lopez, and David Centurión, and Erika Vázquez, and Udayasankar Arulmani, and Pramod R Saxena, and Carlos M Villalón
November 2020, Scientific reports,
Araceli Sánchez-Lopez, and David Centurión, and Erika Vázquez, and Udayasankar Arulmani, and Pramod R Saxena, and Carlos M Villalón
November 2013, British journal of pharmacology,
Araceli Sánchez-Lopez, and David Centurión, and Erika Vázquez, and Udayasankar Arulmani, and Pramod R Saxena, and Carlos M Villalón
September 2010, European journal of pharmacology,
Araceli Sánchez-Lopez, and David Centurión, and Erika Vázquez, and Udayasankar Arulmani, and Pramod R Saxena, and Carlos M Villalón
December 1995, British journal of pharmacology,
Araceli Sánchez-Lopez, and David Centurión, and Erika Vázquez, and Udayasankar Arulmani, and Pramod R Saxena, and Carlos M Villalón
April 2018, Canadian journal of physiology and pharmacology,
Araceli Sánchez-Lopez, and David Centurión, and Erika Vázquez, and Udayasankar Arulmani, and Pramod R Saxena, and Carlos M Villalón
March 1998, British journal of pharmacology,
Araceli Sánchez-Lopez, and David Centurión, and Erika Vázquez, and Udayasankar Arulmani, and Pramod R Saxena, and Carlos M Villalón
October 2014, Vascular pharmacology,
Copied contents to your clipboard!