Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. 1992

S E Maier, and S E Fischer, and G C McKinnon, and O M Hess, and H P Krayenbuehl, and P Boesiger
Institute of Biomedical Engineering and Medical Informatics, University of Zurich, Switzerland.

BACKGROUND Segmental wall motion was assessed noninvasively in eight patients with hypertrophic cardiomyopathy and six healthy volunteers by magnetic resonance myocardial tagging. RESULTS Localization scans were performed for determination of the true short-axis views of the left ventricle (double-angulated view). Spatial modulation of magnetization was used to produce a rectangular grid of landmarks. Distortion of the grid was assessed at end diastole, mid systole, and end systole with multiphase gradient echoes. Image sets were acquired at three different planes, namely, the base, the equator, and the apex. Quantitative evaluation was carried out by computer-assisted image analysis. Each individual grid crossing point was identified automatically and the displacement calculated. A polar coordinate system with the center of gravity as motion reference point was chosen to assess fractional rotation and radial displacement at the endocardial, midwall, and epicardial layers of the septal, anterior, posterior, and inferior regions. A wringing motion of the left ventricle with a clockwise rotation of 5.0 +/- 2.4 degrees at the base and a counterclockwise rotation of -9.6 +/- 2.9 degrees at the apex was observed in control subjects. An equal rotation of 5.0 +/- 2.5 degrees at the base and a slightly reduced rotation of -7.3 +/- 5.2 degrees at the apex was found in patients with hypertrophic cardiomyopathy. A transmural gradient in fractional rotation and radial displacement was observed, with the highest values in the endocardial layer. Rotation in patients with hypertrophic cardiomyopathy was significantly less than in normal volunteers in the posterior region of the equatorial and apical planes. Furthermore, radial displacement was significantly reduced in the septum and inferior wall. In the anterior and posterior wall segments, a reduction of the radial displacement was observed only in the epicardium and midwall layers. CONCLUSIONS Magnetic resonance myocardial tagging allows the noninvasive assessment of regional wall motion. Both in normal volunteers and in patients with hypertrophic cardiomyopathies, cardiac motion occurs in a complex mode, with the base and the apex rotating in opposite directions and the equatorial plane as a transitional zone (wringing motion). A reduced cardiac rotation can be observed in patients with hypertrophic cardiomyopathy mainly in the posterior region, whereas a reduced radial displacement is found in the inferior septal zone.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002312 Cardiomyopathy, Hypertrophic A form of CARDIAC MUSCLE disease, characterized by left and/or right ventricular hypertrophy (HYPERTROPHY, LEFT VENTRICULAR; HYPERTROPHY, RIGHT VENTRICULAR), frequent asymmetrical involvement of the HEART SEPTUM, and normal or reduced left ventricular volume. Risk factors include HYPERTENSION; AORTIC STENOSIS; and gene MUTATION; (FAMILIAL HYPERTROPHIC CARDIOMYOPATHY). Cardiomyopathy, Hypertrophic Obstructive,Cardiomyopathies, Hypertrophic,Cardiomyopathies, Hypertrophic Obstructive,Hypertrophic Cardiomyopathies,Hypertrophic Cardiomyopathy,Hypertrophic Obstructive Cardiomyopathies,Hypertrophic Obstructive Cardiomyopathy,Obstructive Cardiomyopathies, Hypertrophic,Obstructive Cardiomyopathy, Hypertrophic
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S E Maier, and S E Fischer, and G C McKinnon, and O M Hess, and H P Krayenbuehl, and P Boesiger
January 1982, Giornale italiano di cardiologia,
S E Maier, and S E Fischer, and G C McKinnon, and O M Hess, and H P Krayenbuehl, and P Boesiger
September 1993, Acta radiologica (Stockholm, Sweden : 1987),
S E Maier, and S E Fischer, and G C McKinnon, and O M Hess, and H P Krayenbuehl, and P Boesiger
March 1997, Nihon rinsho. Japanese journal of clinical medicine,
S E Maier, and S E Fischer, and G C McKinnon, and O M Hess, and H P Krayenbuehl, and P Boesiger
April 2008, Journal of cardiology,
S E Maier, and S E Fischer, and G C McKinnon, and O M Hess, and H P Krayenbuehl, and P Boesiger
January 2006, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance,
S E Maier, and S E Fischer, and G C McKinnon, and O M Hess, and H P Krayenbuehl, and P Boesiger
February 2004, Der Radiologe,
S E Maier, and S E Fischer, and G C McKinnon, and O M Hess, and H P Krayenbuehl, and P Boesiger
January 1988, American heart journal,
S E Maier, and S E Fischer, and G C McKinnon, and O M Hess, and H P Krayenbuehl, and P Boesiger
March 1982, Journal of cardiography,
S E Maier, and S E Fischer, and G C McKinnon, and O M Hess, and H P Krayenbuehl, and P Boesiger
December 1978, British heart journal,
S E Maier, and S E Fischer, and G C McKinnon, and O M Hess, and H P Krayenbuehl, and P Boesiger
September 2010, The American journal of cardiology,
Copied contents to your clipboard!