The role of neurotransmitters in neurite outgrowth and synapse formation. 2003

Ronald E van Kesteren, and Gaynor E Spencer
Department of Molecular and Cellular Neurobiology, Faculty of Biology, Research Institute Neurosciences, Vrije Universiteit, Amsterdam, The Netherlands. revankes@bio.vu.nl

Besides a well-established role in neuronal communication in the adult central nervous system, neurotransmitters have diverse tasks in the embryonic brain, ranging from early developmental functions in morphogenesis /13/, to later functions in target selection and synapse formation /87/. For example, growth cones of developing neurons are known to release transmitters /26,36,88,110,115/ and respond to transmitters released from other neurons /35,44,59, 61,70/. Moreover, depletion of transmitters during embryonic development results in developmental deficits of the brain /21,48,84,109/, suggesting that transmitters have crucial roles as morphogens and/or neurotrophic factors. Although recently the idea of neurotransmitters being important for neural development has been challenged /99/, there is a vast amount of literature that seems to support the hypothesis that neurotransmitter release in the developing central nervous system is crucial for proper brain development. In this review we focus on the roles that neurotransmitters play in neurite outgrowth, target selection and synapse formation, with particular emphasis on the effects of the transmitters serotonin and dopamine.

UI MeSH Term Description Entries
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D016501 Neurites In tissue culture, hairlike projections of neurons stimulated by growth factors and other molecules. These projections may go on to form a branched tree of dendrites or a single axon or they may be reabsorbed at a later stage of development. "Neurite" may refer to any filamentous or pointed outgrowth of an embryonal or tissue-culture neural cell. Neurite
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Ronald E van Kesteren, and Gaynor E Spencer
January 1998, Perspectives on developmental neurobiology,
Ronald E van Kesteren, and Gaynor E Spencer
September 1987, The Journal of experimental biology,
Ronald E van Kesteren, and Gaynor E Spencer
June 2000, Proceedings of the National Academy of Sciences of the United States of America,
Ronald E van Kesteren, and Gaynor E Spencer
December 2010, The Journal of biological chemistry,
Ronald E van Kesteren, and Gaynor E Spencer
July 2022, Molecular brain,
Ronald E van Kesteren, and Gaynor E Spencer
November 2015, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Ronald E van Kesteren, and Gaynor E Spencer
October 2009, European journal of cell biology,
Ronald E van Kesteren, and Gaynor E Spencer
August 1992, Proceedings. Biological sciences,
Copied contents to your clipboard!