Cardiac bioenergetics in Friedreich's ataxia. 2003

Raffaele Lodi, and Bheeshma Rajagopalan, and Anthony H V Schapira, and J Mark Cooper

UI MeSH Term Description Entries
D009202 Cardiomyopathies A group of diseases in which the dominant feature is the involvement of the CARDIAC MUSCLE itself. Cardiomyopathies are classified according to their predominant pathophysiological features (DILATED CARDIOMYOPATHY; HYPERTROPHIC CARDIOMYOPATHY; RESTRICTIVE CARDIOMYOPATHY) or their etiological/pathological factors (CARDIOMYOPATHY, ALCOHOLIC; ENDOCARDIAL FIBROELASTOSIS). Myocardial Disease,Myocardial Diseases,Myocardial Diseases, Primary,Myocardial Diseases, Secondary,Myocardiopathies,Primary Myocardial Disease,Cardiomyopathies, Primary,Cardiomyopathies, Secondary,Primary Myocardial Diseases,Secondary Myocardial Diseases,Cardiomyopathy,Cardiomyopathy, Primary,Cardiomyopathy, Secondary,Disease, Myocardial,Disease, Primary Myocardial,Disease, Secondary Myocardial,Diseases, Myocardial,Diseases, Primary Myocardial,Diseases, Secondary Myocardial,Myocardial Disease, Primary,Myocardial Disease, Secondary,Myocardiopathy,Primary Cardiomyopathies,Primary Cardiomyopathy,Secondary Cardiomyopathies,Secondary Cardiomyopathy,Secondary Myocardial Disease
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D004452 Echocardiography Ultrasonic recording of the size, motion, and composition of the heart and surrounding tissues. The standard approach is transthoracic. Echocardiography, Contrast,Echocardiography, Cross-Sectional,Echocardiography, M-Mode,Echocardiography, Transthoracic,Echocardiography, Two-Dimensional,Transthoracic Echocardiography,2-D Echocardiography,2D Echocardiography,Contrast Echocardiography,Cross-Sectional Echocardiography,Echocardiography, 2-D,Echocardiography, 2D,M-Mode Echocardiography,Two-Dimensional Echocardiography,2 D Echocardiography,Cross Sectional Echocardiography,Echocardiography, 2 D,Echocardiography, Cross Sectional,Echocardiography, M Mode,Echocardiography, Two Dimensional,M Mode Echocardiography,Two Dimensional Echocardiography
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005621 Friedreich Ataxia An autosomal recessive disease, usually of childhood onset, characterized pathologically by degeneration of the spinocerebellar tracts, posterior columns, and to a lesser extent the corticospinal tracts. Clinical manifestations include GAIT ATAXIA, pes cavus, speech impairment, lateral curvature of spine, rhythmic head tremor, kyphoscoliosis, congestive heart failure (secondary to a cardiomyopathy), and lower extremity weakness. Most forms of this condition are associated with a mutation in a gene on chromosome 9, at band q13, which codes for the mitochondrial protein frataxin. (From Adams et al., Principles of Neurology, 6th ed, p1081; N Engl J Med 1996 Oct 17;335(16):1169-75) The severity of Friedreich ataxia associated with expansion of GAA repeats in the first intron of the frataxin gene correlates with the number of trinucleotide repeats. (From Durr et al, N Engl J Med 1996 Oct 17;335(16):1169-75) Friedreich Disease,Hereditary Spinal Sclerosis,Sclerosis, Hereditary Spinal,Friedreich Familial Ataxia,Friedreich Hereditary Ataxia,Friedreich Hereditary Spinal Ataxia,Friedreich Spinocerebellar Ataxia,Friedreich's Ataxia,Friedreich's Disease,Friedreich's Familial Ataxia,Friedreich's Hereditary Ataxia,Friedreich's Hereditary Spinal Ataxia,Hereditary Spinal Ataxia, Friedreich,Hereditary Spinal Ataxia, Friedreich's,Ataxia, Friedreich,Ataxia, Friedreich Familial,Ataxia, Friedreich Hereditary,Ataxia, Friedreich Spinocerebellar,Ataxia, Friedreich's,Ataxia, Friedreich's Familial,Ataxia, Friedreich's Hereditary,Ataxias, Friedreich,Ataxias, Friedreich's Hereditary,Disease, Friedreich,Disease, Friedreich's,Familial Ataxia, Friedreich,Familial Ataxia, Friedreich's,Friedreich Ataxias,Friedreich's Hereditary Ataxias,Friedreichs Familial Ataxia,Friedreichs Hereditary Ataxia,Hereditary Ataxia, Friedreich,Hereditary Ataxia, Friedreich's,Hereditary Ataxias, Friedreich's,Hereditary Spinal Scleroses,Scleroses, Hereditary Spinal,Spinal Scleroses, Hereditary,Spinal Sclerosis, Hereditary,Spinocerebellar Ataxia, Friedreich
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D019680 Trinucleotide Repeat Expansion An increased number of contiguous trinucleotide repeats in the DNA sequence from one generation to the next. The presence of these regions is associated with diseases such as FRAGILE X SYNDROME and MYOTONIC DYSTROPHY. Some CHROMOSOME FRAGILE SITES are composed of sequences where trinucleotide repeat expansion occurs. Expanded Trinucleotide Repeat,Expanded Trinucleotide Repeats,Expansion, Trinucleotide Repeat,Expansions, Trinucleotide Repeat,Repeat Expansion, Trinucleotide,Repeat Expansions, Trinucleotide,Repeat, Expanded Trinucleotide,Repeats, Expanded Trinucleotide,Trinucleotide Repeat Expansions,Trinucleotide Repeat, Expanded,Trinucleotide Repeats, Expanded

Related Publications

Raffaele Lodi, and Bheeshma Rajagopalan, and Anthony H V Schapira, and J Mark Cooper
June 2002, Cardiovascular research,
Raffaele Lodi, and Bheeshma Rajagopalan, and Anthony H V Schapira, and J Mark Cooper
February 1978, British medical journal,
Raffaele Lodi, and Bheeshma Rajagopalan, and Anthony H V Schapira, and J Mark Cooper
June 1950, American heart journal,
Raffaele Lodi, and Bheeshma Rajagopalan, and Anthony H V Schapira, and J Mark Cooper
May 1964, Annals of internal medicine,
Raffaele Lodi, and Bheeshma Rajagopalan, and Anthony H V Schapira, and J Mark Cooper
January 2004, Casopis lekaru ceskych,
Raffaele Lodi, and Bheeshma Rajagopalan, and Anthony H V Schapira, and J Mark Cooper
July 1956, Irish journal of medical science,
Raffaele Lodi, and Bheeshma Rajagopalan, and Anthony H V Schapira, and J Mark Cooper
March 1962, Circulation,
Raffaele Lodi, and Bheeshma Rajagopalan, and Anthony H V Schapira, and J Mark Cooper
February 1951, The New England journal of medicine,
Raffaele Lodi, and Bheeshma Rajagopalan, and Anthony H V Schapira, and J Mark Cooper
July 2017, JCI insight,
Raffaele Lodi, and Bheeshma Rajagopalan, and Anthony H V Schapira, and J Mark Cooper
November 1976, The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques,
Copied contents to your clipboard!