Pharmacokinetics and pharmacodynamics of azosemide. 2003

Ok K Suh, and So H Kim, and Myung G Lee
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.

Azosemide is used in the treatment of oedematous states and hypertension. The exact mechanism of action is not fully understood, but it mainly acts on both the medullary and cortical segments of the thick ascending limb of the loop of Henle. Delayed tolerance was demonstrated in humans by homeostatic mechanisms (principally an increase in aldosterone secretion and perhaps also an increase in the reabsorption of solute in the proximal tubule). After oral administration to healthy humans in the fasting state, the plasma concentration of azosemide reached its peak at 3-4 h with an absorption lag time of approximately 1 h and a terminal half-life of 2-3 h. The estimated extent of absolute oral bioavailability in humans was approximately 20.4%. After oral administration of the same dose of azosemide and furosemide, the diuretic effect was similar between the two drugs, but after intravenous administration, the effect of azosemide was 5.5-8 times greater than that in furosemide. This could be due to the considerable first-pass effect of azosemide. The protein binding to 4% human serum albumin was greater than 95% at azosemide concentrations ranging from 10 to 100 microg/ml using an equilibrium dialysis technique. The poor affinity of human tissues to azosemide was supported by the relatively small value of the apparent post-pseudodistribution volume of distribution (Vdbeta), 0.262 l/kg. Eleven metabolites (including degraded products) of azosemide including M1, glucuronide conjugates of both M1 and azosemide, thiophenemethanol, thiophencarboxylic acid and its glycine conjugate were obtained in rats. Only azosemide and its glucuronide were detected in humans. In humans, total body clearance, renal clearance and terminal half-life of azosemide were 112 ml/min, 41.6 ml/min and 2.03 h, respectively. Azosemide is actively secreted in the renal proximal tubule possibly via nonspecific organic acid secretory pathway in humans. Thus, the amount of azosemide that reaches its site of action could be significantly modified by changes in the capacity of this transport system. This capacity, in turn, could be predictably changed in disease states, resulting in decreased delivery of the diuretic to the transport site, as well as in the presence of other organic acids such as nonsteroidal anti-inflammatory drugs which could compete for active transport of azosemide. The urinary excretion rate of azosemide could be correlated well to its diuretic effects since the receptors are located in the loop of Henle. The diuretic effects of azosemide were dependent on the rate and composition of fluid replacement in rabbits; therefore, this factor should be considered in the evaluation of bioequivalence assessment.

UI MeSH Term Description Entries
D002986 Clinical Trials as Topic Works about pre-planned studies of the safety, efficacy, or optimum dosage schedule (if appropriate) of one or more diagnostic, therapeutic, or prophylactic drugs, devices, or techniques selected according to predetermined criteria of eligibility and observed for predefined evidence of favorable and unfavorable effects. This concept includes clinical trials conducted both in the U.S. and in other countries. Clinical Trial as Topic
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013424 Sulfanilamides Compounds based on 4-aminobenzenesulfonamide. The '-anil-' part of the name refers to aniline. Sulphanilamides
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

Ok K Suh, and So H Kim, and Myung G Lee
May 1999, Biopharmaceutics & drug disposition,
Ok K Suh, and So H Kim, and Myung G Lee
July 1998, The Journal of pharmacy and pharmacology,
Ok K Suh, and So H Kim, and Myung G Lee
February 2003, Drug metabolism and disposition: the biological fate of chemicals,
Ok K Suh, and So H Kim, and Myung G Lee
July 1996, Research communications in molecular pathology and pharmacology,
Ok K Suh, and So H Kim, and Myung G Lee
October 1997, Biopharmaceutics & drug disposition,
Ok K Suh, and So H Kim, and Myung G Lee
December 1996, Journal of pharmacokinetics and biopharmaceutics,
Ok K Suh, and So H Kim, and Myung G Lee
October 1996, The Journal of pharmacy and pharmacology,
Ok K Suh, and So H Kim, and Myung G Lee
January 1997, Biopharmaceutics & drug disposition,
Copied contents to your clipboard!