ras mutations in endocrine tumors: mutation detection by polymerase chain reaction-single strand conformation polymorphism. 1992

K Yoshimoto, and H Iwahana, and A Fukuda, and T Sano, and K Katsuragi, and M Kinoshita, and S Saito, and M Itakura
Otsuka Department of Clinical and Molecular Nutrition, School of Medicine, University of Tokushima.

To elucidate the molecular basis for endocrine tumorigenesis, ras mutations in human endocrine tumors were analyzed using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. Mutations of the H-, K-, N-ras genes were examined in genomic DNAs from 169 successfully amplified primary endocrine tumors out of 189 samples. Four out of 24 thyroid follicular adenomas analyzed contained mutated N-ras codon 61, and one contained the mutated H-ras codon 61. One of the 19 pheochromocytomas revealed mutation of the H-ras codon 13. No mutations of the ras gene were detected in pituitary adenomas, parathyroid tumors, thyroid cancers, endocrine pancreatic tumors, and adrenocortical tumors. Based on these findings we conclude that activation of the ras gene may play a role in the tumorigenesis of a limited number of thyroid follicular adenomas and pheochromocytomas, and that mutation of the ras gene is not frequent in other human endocrine tumors.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA

Related Publications

K Yoshimoto, and H Iwahana, and A Fukuda, and T Sano, and K Katsuragi, and M Kinoshita, and S Saito, and M Itakura
July 1990, Oncogene,
K Yoshimoto, and H Iwahana, and A Fukuda, and T Sano, and K Katsuragi, and M Kinoshita, and S Saito, and M Itakura
August 1991, Oncogene,
K Yoshimoto, and H Iwahana, and A Fukuda, and T Sano, and K Katsuragi, and M Kinoshita, and S Saito, and M Itakura
January 1994, Journal of the Society for Gynecologic Investigation,
K Yoshimoto, and H Iwahana, and A Fukuda, and T Sano, and K Katsuragi, and M Kinoshita, and S Saito, and M Itakura
June 1992, Japanese journal of cancer research : Gann,
K Yoshimoto, and H Iwahana, and A Fukuda, and T Sano, and K Katsuragi, and M Kinoshita, and S Saito, and M Itakura
July 2000, Electrophoresis,
K Yoshimoto, and H Iwahana, and A Fukuda, and T Sano, and K Katsuragi, and M Kinoshita, and S Saito, and M Itakura
June 1992, Hinyokika kiyo. Acta urologica Japonica,
K Yoshimoto, and H Iwahana, and A Fukuda, and T Sano, and K Katsuragi, and M Kinoshita, and S Saito, and M Itakura
October 2001, The American journal of tropical medicine and hygiene,
K Yoshimoto, and H Iwahana, and A Fukuda, and T Sano, and K Katsuragi, and M Kinoshita, and S Saito, and M Itakura
February 1992, Cancer letters,
K Yoshimoto, and H Iwahana, and A Fukuda, and T Sano, and K Katsuragi, and M Kinoshita, and S Saito, and M Itakura
October 1992, Japanese journal of cancer research : Gann,
K Yoshimoto, and H Iwahana, and A Fukuda, and T Sano, and K Katsuragi, and M Kinoshita, and S Saito, and M Itakura
December 1996, Japanese journal of clinical oncology,
Copied contents to your clipboard!