Predictions are made for the momentum- and carrier-dependent degradation of the Mott gap upon doping in high-T(c) cuprates as would be observed in Cu K-edge resonant inelastic x-ray scattering (RIXS). The two-dimensional Hubbard model with second- and third-nearest-neighbor hopping terms has been studied by numerical exact diagonalization. Special emphasis is placed on the particle-hole asymmetry of the Mott gap excitations. We argue that the Mott gap excitations observed by RIXS are significantly influenced by the interaction between charge carriers and antiferromagnetic correlations.
| UI | MeSH Term | Description | Entries |
|---|