The P-glycoprotein inhibitor quinidine decreases the threshold for bupivacaine-induced, but not lidocaine-induced, convulsions in rats. 2003

Tomoharu Funao, and Yutaka Oda, and Katsuaki Tanaka, and Akira Asada
Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan.

OBJECTIVE To examine whether inhibition of P-glycoprotein (P-gp) activity by quinidine affects the central nervous system toxicity of lidocaine and racemic bupivacaine (bupivacaine). METHODS Forty male Sprague-Dawley rats were randomly divided into four groups (n = 10). Fifteen minutes following administration of 15 mg x kg(-1) of quinidine (QL and QB groups) or saline (L and B groups), lidocaine (L and QL groups, 4 mg x kg(-1) x min(-1)) or bupivacaine (B and QB groups, 1 mg x kg(-1) x min(-1)) was infused until convulsions occurred. Concentrations of lidocaine and its primary metabolite, monoethylglycinexylidide (MEGX) and bupivacaine in plasma and in the brain at the onset of convulsions were measured by high-performance liquid chromatography. RESULTS There were no differences in the dose of lidocaine required to induce convulsions between the L and QL groups. There were no differences in the concentrations of total (L = 17.2 +/- 3.5, QL = 16.6 +/- 2.6 micro g x mL(-1)) or unbound lidocaine (L = 7.8 +/- 2.5, QL = 7.3 +/- 2.3 micro g x mL(-1)), total (L = 1.2 +/- 0.5, QL = 1.3 +/- 0.7 micro g x mL(-1)) or unbound MEGX (L = 0.9 +/- 0.5, QL = 0.8 +/- 0.4 micro g x mL(-1)) in plasma, total lidocaine or MEGX in the brain at the onset of convulsions between the L and QL groups. The dose of bupivacaine required to induce convulsions was comparable in the B and QB groups. At the onset of convulsions, plasma concentrations of both total (B = 4.9 +/- 1.1, QB = 4.0 +/- 0.6 micro g x mL(-1), P = 0.03) and unbound bupivacaine (B = 1.4 +/- 0.6, QB = 0.9 +/- 0.2 micro g x mL(-1), P = 0.02) were significantly lower in the QB group than in the B group. There were no differences in concentration of total bupivacaine in the brain between the B and QB groups. CONCLUSIONS These results suggest that quinidine inhibited P-gp activity, resulting in increased brain/plasma concentration ratio of bupivacaine, but not of lidocaine, and decreased the threshold of plasma concentration for bupivacaine-induced convulsions.

UI MeSH Term Description Entries
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D008297 Male Males
D011802 Quinidine An optical isomer of quinine, extracted from the bark of the CHINCHONA tree and similar plant species. This alkaloid dampens the excitability of cardiac and skeletal muscles by blocking sodium and potassium currents across cellular membranes. It prolongs cellular ACTION POTENTIALS, and decreases automaticity. Quinidine also blocks muscarinic and alpha-adrenergic neurotransmission. Adaquin,Apo-Quinidine,Chinidin,Quincardine,Quinidex,Quinidine Sulfate,Quinora,Apo Quinidine,Sulfate, Quinidine
D001784 Blood Gas Analysis Measurement of oxygen and carbon dioxide in the blood. Analysis, Blood Gas,Analyses, Blood Gas,Blood Gas Analyses,Gas Analyses, Blood,Gas Analysis, Blood
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002045 Bupivacaine A widely used local anesthetic agent. 1-Butyl-N-(2,6-dimethylphenyl)-2-piperidinecarboxamide,Bupivacain Janapharm,Bupivacain-RPR,Bupivacaina Braun,Bupivacaine Anhydrous,Bupivacaine Carbonate,Bupivacaine Hydrochloride,Bupivacaine Monohydrochloride, Monohydrate,Buvacaina,Carbostesin,Dolanaest,Marcain,Marcaine,Sensorcaine,Svedocain Sin Vasoconstr,Bupivacain RPR
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000779 Anesthetics, Local Drugs that block nerve conduction when applied locally to nerve tissue in appropriate concentrations. They act on any part of the nervous system and on every type of nerve fiber. In contact with a nerve trunk, these anesthetics can cause both sensory and motor paralysis in the innervated area. Their action is completely reversible. (From Gilman AG, et. al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed) Nearly all local anesthetics act by reducing the tendency of voltage-dependent sodium channels to activate. Anesthetics, Conduction-Blocking,Conduction-Blocking Anesthetics,Local Anesthetic,Anesthetics, Topical,Anesthetic, Local,Anesthetics, Conduction Blocking,Conduction Blocking Anesthetics,Local Anesthetics,Topical Anesthetics

Related Publications

Tomoharu Funao, and Yutaka Oda, and Katsuaki Tanaka, and Akira Asada
January 1983, Canadian Anaesthetists' Society journal,
Tomoharu Funao, and Yutaka Oda, and Katsuaki Tanaka, and Akira Asada
December 1993, The Journal of laboratory and clinical medicine,
Tomoharu Funao, and Yutaka Oda, and Katsuaki Tanaka, and Akira Asada
May 2008, Anesthesia and analgesia,
Tomoharu Funao, and Yutaka Oda, and Katsuaki Tanaka, and Akira Asada
December 2006, The Journal of pharmacy and pharmacology,
Tomoharu Funao, and Yutaka Oda, and Katsuaki Tanaka, and Akira Asada
January 2003, Immunobiology,
Tomoharu Funao, and Yutaka Oda, and Katsuaki Tanaka, and Akira Asada
November 1981, Pharmacology, biochemistry, and behavior,
Tomoharu Funao, and Yutaka Oda, and Katsuaki Tanaka, and Akira Asada
February 1998, British journal of anaesthesia,
Tomoharu Funao, and Yutaka Oda, and Katsuaki Tanaka, and Akira Asada
January 2005, International journal of obstetric anesthesia,
Tomoharu Funao, and Yutaka Oda, and Katsuaki Tanaka, and Akira Asada
January 1979, Chest,
Tomoharu Funao, and Yutaka Oda, and Katsuaki Tanaka, and Akira Asada
December 1993, Canadian journal of anaesthesia = Journal canadien d'anesthesie,
Copied contents to your clipboard!