Regulation of alpha7 integrin expression during muscle differentiation. 2003

Jianqiao Xiao, and Poonam Jethanandani, and Barry L Ziober, and Randall H Kramer
Departments of Stomatology and Anatomy, University of California at San Francisco, San Francisco, California 94143-0422, USA.

Expression of the laminin-binding alpha7 integrin is tightly regulated during myogenic differentiation, reflecting required functions that range from cell motility to formation of stable myotendinous junctions. However, the exact mechanism controlling alpha7 expression in a tissue- and differentiation-specific manner is poorly understood. This report provides evidence that alpha7 gene expression during muscle differentiation is regulated by the c-Myc transcription factor. In myoblasts, alpha7 is expressed at basal levels, but following conversion to myotubes the expression of the integrin is strongly elevated. The increased alpha7 mRNA and protein levels following myogenic differentiation are inversely correlated with c-Myc expression. Transfection of myoblasts with the c-Myc transcription factor down-regulated alpha7 expression, whereas overexpression of Madmyc, a dominant-negative c-Myc chimera, induced elevated alpha7 expression. Functional analysis with site-specific deletions identified a specific double E-box sequence in the upstream promoter region (-2.0 to -2.6 kb) that is responsible for c-Myc-induced suppression of alpha7 expression. DNA-protein binding assays and supershift analysis revealed that c-Myc forms a complex with this double E-box sequence. Our results suggest that the interaction of c-Myc with this promoter region is an important regulatory element controlling alpha7 integrin expression during muscle development and myotendinous junction formation.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

Jianqiao Xiao, and Poonam Jethanandani, and Barry L Ziober, and Randall H Kramer
May 2001, Neuromuscular disorders : NMD,
Jianqiao Xiao, and Poonam Jethanandani, and Barry L Ziober, and Randall H Kramer
July 2004, American journal of physiology. Heart and circulatory physiology,
Jianqiao Xiao, and Poonam Jethanandani, and Barry L Ziober, and Randall H Kramer
October 2005, The Journal of biological chemistry,
Jianqiao Xiao, and Poonam Jethanandani, and Barry L Ziober, and Randall H Kramer
April 1992, Blood,
Jianqiao Xiao, and Poonam Jethanandani, and Barry L Ziober, and Randall H Kramer
September 2005, Cell metabolism,
Jianqiao Xiao, and Poonam Jethanandani, and Barry L Ziober, and Randall H Kramer
July 1992, The Journal of biological chemistry,
Jianqiao Xiao, and Poonam Jethanandani, and Barry L Ziober, and Randall H Kramer
October 1992, European journal of immunology,
Jianqiao Xiao, and Poonam Jethanandani, and Barry L Ziober, and Randall H Kramer
November 2008, American journal of physiology. Regulatory, integrative and comparative physiology,
Jianqiao Xiao, and Poonam Jethanandani, and Barry L Ziober, and Randall H Kramer
February 2004, The Journal of biological chemistry,
Jianqiao Xiao, and Poonam Jethanandani, and Barry L Ziober, and Randall H Kramer
April 2006, American journal of physiology. Cell physiology,
Copied contents to your clipboard!