Acetylcholine increases intracellular Ca2+ via nicotinic receptors in cultured PDF-containing clock neurons of Drosophila. 2004

Christian Wegener, and Yasutaka Hamasaka, and Dick R Nässel
Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden.

Light entrains the biological clock both in adult and larval Drosophila melanogaster. The Bolwig organ photoreceptors most likely constitute one substrate for this light entrainment in larvae. Acetylcholine (ACh) has been suggested as the neurotransmitter in these photoreceptors, but there is no evidence that ACh signaling is involved in photic input onto circadian pacemaker neurons. Here we demonstrate that the putative targets of the Bolwig photoreceptors, the PDF-containing clock neurons (LNs), in the larval brain express functional ACh receptors (AChRs). With the use of GAL4-UAS-driven expression of green fluorescent protein (GFP), we were able to identify LNs in dissociated cell culture. After loading with the Ca(2+)-sensitive dye fura-2, we monitored changes in intracellular Ca(2+) levels ([Ca(2+)](i)) in GFP-marked LNs while applying candidate neurotransmitters. ACh induced transient increases in [Ca(2+)](i) at physiological concentrations. These increases were dependent on extracellular Ca(2+) and Na(+) and were likely caused by activation of voltage-dependent Ca(2+) channels. Application of nicotinic and muscarinic agonists and antagonists showed that the AChRs on cultured LNs have a nicotinic pharmacology. Antibodies to several subunits of nicotinic AChRs (nAChRs) labeled the putative contact site of the Bolwig organ axon terminals with the dendrites of LNs, as well as dissociated LNs in culture. Our findings support a role of ACh as input factor onto the LNs and suggest that Ca(2+) is used as a second messenger mediating cholinergic input within the LNs. Experiments using a more general GAL4-UAS-driven expression of GFP showed that functional expression of nAChRs is a widespread phenomenon in peptidergic neurons.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Christian Wegener, and Yasutaka Hamasaka, and Dick R Nässel
August 2015, Neuropharmacology,
Christian Wegener, and Yasutaka Hamasaka, and Dick R Nässel
June 2002, Journal of neurophysiology,
Christian Wegener, and Yasutaka Hamasaka, and Dick R Nässel
April 2008, Journal of biological rhythms,
Christian Wegener, and Yasutaka Hamasaka, and Dick R Nässel
April 2015, Journal of neurophysiology,
Christian Wegener, and Yasutaka Hamasaka, and Dick R Nässel
March 1991, Neuropeptides,
Christian Wegener, and Yasutaka Hamasaka, and Dick R Nässel
April 2006, Cell calcium,
Christian Wegener, and Yasutaka Hamasaka, and Dick R Nässel
April 1996, Molecular neurobiology,
Christian Wegener, and Yasutaka Hamasaka, and Dick R Nässel
April 2014, Proceedings of the National Academy of Sciences of the United States of America,
Christian Wegener, and Yasutaka Hamasaka, and Dick R Nässel
January 1996, Advances in experimental medicine and biology,
Christian Wegener, and Yasutaka Hamasaka, and Dick R Nässel
January 2010, Acta biochimica et biophysica Sinica,
Copied contents to your clipboard!