Nerve growth factor (NGF) receptors in a central nervous system glial cell line: upregulation by NGF and brain-derived neurotrophic factor. 1992

P E Spoerri, and S Romanello, and L Petrelli, and A Negro, and R Dal Toso, and A Leon, and S D Skaper
Department of Cellular Biology, Fidia Research Laboratories, Abano Terme, Italy.

The neurotrophic proteins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are related in their primary amino acid structures. In this study we investigated the extent to which the low-affinity NGF receptor (LNGFR) in C6 glioma cells can discriminate between the neurotrophins NGF and BDNF. LNGFR-immunoreactivity (IR) was studied in C6 cells treated for 16 hr with NGF (50 ng/ml) or BDNF (10 ng/ml), using immunogold labelling and electron microscopic morphometric analysis. The cells were exposed to the anti-NGFR antibody 192-IgG, followed by immunoglobulin conjugated with colloidal gold. Untreated C6 cells exhibited some surface gold label (positive LNGFR-IR). Cells treated with NGF or BDNF displayed significantly increased LNGFR-IR on all surfaces in terms of gold labeling, which was more pronounced in NGF-treated cells. LNGFR-IR was also localized in coated endocytotic vesicles, in smooth endoplasmic reticulum, and in secondary multivesicular lysosomes in neurotrophin-treated and untreated cells. The increase in LNGFR protein was further substantiated by a correspondingly higher content of LNGFR mRNA detected after 15 hr of either NGF or BDNF treatment. These results suggest that the LNGFR in glial cells can be upregulated by the structurally related neurotrophins NGF and BDNF.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

P E Spoerri, and S Romanello, and L Petrelli, and A Negro, and R Dal Toso, and A Leon, and S D Skaper
December 1987, Biochemical pharmacology,
P E Spoerri, and S Romanello, and L Petrelli, and A Negro, and R Dal Toso, and A Leon, and S D Skaper
January 2018, Pakistan journal of medical sciences,
P E Spoerri, and S Romanello, and L Petrelli, and A Negro, and R Dal Toso, and A Leon, and S D Skaper
January 2000, Neuroscience,
P E Spoerri, and S Romanello, and L Petrelli, and A Negro, and R Dal Toso, and A Leon, and S D Skaper
September 2001, Neuroscience letters,
P E Spoerri, and S Romanello, and L Petrelli, and A Negro, and R Dal Toso, and A Leon, and S D Skaper
May 2002, Canadian journal of physiology and pharmacology,
P E Spoerri, and S Romanello, and L Petrelli, and A Negro, and R Dal Toso, and A Leon, and S D Skaper
June 2003, Neurochemical research,
P E Spoerri, and S Romanello, and L Petrelli, and A Negro, and R Dal Toso, and A Leon, and S D Skaper
September 2003, The international journal of neuropsychopharmacology,
P E Spoerri, and S Romanello, and L Petrelli, and A Negro, and R Dal Toso, and A Leon, and S D Skaper
September 2002, The journal of ECT,
P E Spoerri, and S Romanello, and L Petrelli, and A Negro, and R Dal Toso, and A Leon, and S D Skaper
March 2001, Brain research. Molecular brain research,
Copied contents to your clipboard!